Machine learning application for functional properties prediction in magnetic materials

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Machine learning (ML) has proven to be a powerful tool, significantly speeding up and simplifying the development of new materials while enhancing their functional characteristics. In recent years, there has been an exponential growth in the number of scientific publications exploring the use of ML in materials science. Using this approach, various materials, including magnetic ones, are being actively developed and studied. This article aims to critically review research that applies ML to predict the functional characteristics of soft and hard magnetic materials. The paper is divided into three sections: the first outlines the basic principles and algorithms of machine learning, highlighting its use in addressing practical materials science challenges; the second discusses recent advances in developing magnetic functional alloys using ML; the last section provides a critical analysis of the use of machine learning methods in this area, analyzes its advantages and disadvantages, and gives recommendations for organizing such research.

全文:

受限制的访问

作者简介

V. Milyutin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: milyutin@imp.uran.ru
俄罗斯联邦, Ekaterinburg

N. Nikul’chenkov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: milyutin@imp.uran.ru
俄罗斯联邦, Ekaterinburg

参考

  1. Agrawal A., Choudhary A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science // APL Materials. 2016. V. 4. Р. 053208.
  2. Ziatdinov M., Dyck O., Maksov A., Li X., Sang X., Xiao K., Unocic R.R., Vasudevan R., Jesse S., Kalinin S.V. Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations // ACS Nano. 2017. V. 11. P. 12742–12752.
  3. Chen X., Xu S., Shabani S., Zhao Y., Fu M., Millis A.J., Fogler M.M., Pasupathy A.N., Liu M., Basov D.N. Machine Learning for Optical Scanning Probe Nanoscopy // Adv. Mater. 2022. V. 35. Р. 2109171.
  4. Wu Y., Liu J., Wei Y., An D., Duan Y., Li W., Li B., Chen Y., Wei Q. Intelligent control method of underwater inspection robot in netcage. Aquac. Res. John Wiley & Sons, Ltd, 2022. V. 53. P. 1928–1938.
  5. Gibert X., Patel V.M., Chellappa R. Deep Multitask Learning for Railway Track Inspection // IEEE trans Intell Transp Syst. 2017. V. 18. P. 153–164.
  6. Deringer V.L., Caro M.A., Csányi G. Machine Learning Interatomic Potentials as Emerging Tools for Materials Science // Adv. Mater. 2019. V. 31. Р. 1902765.
  7. Balyakin I.A., Vlasov M.I., Pershina S. V., Tsymbarenko D.M., Rempel A.A. Neural network molecular dynamics study of LiGe2(PO4)3: Investigation of structure // Comput. Mater. Sci. 2024. V. 239. P. 112979.
  8. Balyakin I.A., Ryltsev R.E., Chtchelkatchev N.M. Liquid–Crystal Structure Inheritance in Machine Learning Potentials for Network-Forming Systems // JETP Letters. 2023. V. 117. P. 370–376.
  9. Tamura R., Watanabe M., Mamiya H., Washio K., Yano M., Danno K., Kato A., Shoji T. Materials informatics approach to understand aluminum alloys // Sci. Technol. Adv. Mater. 2020. V. 21. P. 540–551.
  10. Gubernatis J.E., Lookman T. Machine learning in materials design and discovery: Examples from the present and suggestions for the future // Phys. Rev. Mater. 2018. V. 2. Р. 120301.
  11. Xie T., Grossman J.C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties // Phys. Rev. Lett. 2018. V. 120. Р. 145301.
  12. Wang T., Zhang K., Thé J., Yu H. Accurate prediction of band gap of materials using stacking machine learning model // Comput. Mater. Sci. 2022. V. 201. Р. 110899.
  13. Liu Y., Guo B., Zou X., Li Y., Shi S. Machine learning assisted materials design and discovery for rechargeable batteries // Energy Stor. Mater. 2020. V. 31. P. 434–450.
  14. He J., Li J., Liu C., Wang C., Zhang Y., Wen C., Xue D., Cao J., Su Y., Qiao L., Bai Y. Machine learning identified materials descriptors for ferroelectricity // Acta Mater. 2021. V. 209. Р. 116815.
  15. Liu X., Zhang J., Pei Z. Machine learning for high-entropy alloys: Progress, challenges and opportunities // Prog. Mater. Sci. 2023. V. 131. Р. 101018.
  16. Krishna Y.V., Jaiswal U.K., Rahul R.M. Machine learning approach to predict new multiphase high entropy alloys // Scr. Mater. 2021. V. 197. Р. 113804.
  17. Oliynyk A.O., Antono E., Sparks T.D., Ghadbeigi L., Gaultois M.W., Meredig B., Mar A. High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds // Chem. Mater. 2016. V. 28. P. 7324–7331.
  18. Bhattacharya S.K., Sahara R., Božić D., Ružić J. Data analytics approach to predict the hardness of copper matrix composites // Metallurgical and Materials Engineering 2020. V. 26. P. 357–364.
  19. Antunes L.M., Vikram, Plata J.J., Powell A.V., Butler K.T., Grau-Crespo R. Machine Learning Approaches for Accelerating the Discovery of Thermoelectric Materials // ACS Symp. Ser. 2022. V. 1416.
  20. Zhang N., He A., Zhang G., Cai P., Zhang B., Ling Y., Dong Y., Li J., Man Q., Shen B. Interpretable machine learning-assisted design of Fe-based nanocrystalline alloys with high saturation magnetic induction and low coercivity // J Mater. Sci. Technol. 2024. V. 188. P. 73–83.
  21. Murdock R.J., Kauwe S.K., Wang A.Y.T., Sparks T.D. Is Domain Knowledge Necessary for Machine Learning Materials Properties? // J. Theor. Comput. Chem. 2020. V. 9. P. 221–227.
  22. De Breuck P.P., Hautier G., Rignanese G.M. Materials property prediction for limited datasets enabled by feature selection and joint learning with MODNet // NPJ Comput. Mater. 2021. V. 7. P. 83.
  23. Xu P., Ji X., Li M. Small data machine learning in materials science // NPJ Comput. Mater. 2023. V. 9. P. 42.
  24. Zhang Y., Ling C. A strategy to apply machine learning to small datasets in materials science // NPJ Comput. Mater. 2018. V. 4. P. 25.
  25. Choudhary K., DeCost B., Chen C., Jain A., Tavazza F., Cohn R., Park C.W., Choudhary A., Agrawal A., Billinge S.J.L., Holm E., Ong S.P., Wolverton C. Recent advances and applications of deep learning methods in materials science // NPJ Comput. Mater. 2022. V. 8. P. 59.
  26. Emmert-Streib F., Yang Z., Feng H., Tripathi S., Dehmer M. An Introductory Review of Deep Learning for Prediction Models With Big Data // Front. Artif. Intell. 2020. V. 3.
  27. Wilkinson M.D., Dumontier M., Aalbersberg I., Appleton G., Axton M., Baak A., Blomberg N., Boiten J.W., da Silva Santos L.B., Bourne P.E., Bouwman J., Brookes A.J., Clark T., Crosas M., Dillo I., Dumon O., Edmunds S., Evelo C.T., Finkers R., Gonzalez-Beltran A., Gray A.J.G., Groth P., Goble C., Grethe J.S., Heringa J., Hoen P.A.C., Hooft R., Kuhn T., Kok R., Kok J., Lusher S.J., Martone M.E., Mons A., Packer A.L., Persson B., Rocca-Serra P., Roos M., van Schaik R., Sansone S.A., Schultes E., Sengstag T., Slater T., Strawn G., Swertz M.A., Thompson M., van der Lei J., van Mulligen E., Velterop J., Waagmeester A., Wittenburg P., Wolstencroft K., Zhao J., Mons B. The FAIR Guiding Principles for scientific data management and stewardship // Sci. Data. 2016. V. 3. Р. 160018.
  28. Miles J. R Squared, Adjusted R Squared / Wiley StatsRef: Statistics Reference Online. 2014.
  29. Mienye I.D., Sun Y. A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects // IEEE Access. 2022. V. 10. P. 99129–99149.
  30. Ting K.M., Witten I.H. Issues in stacked generalization // J. Artif. Intell. Res. 1999. V. 10. P. 271–289.
  31. Bradley W., Kim J., Kilwein Z., Blakely L., Eydenberg M., Jalvin J., Laird C., Boukouvala F. Perspectives on the integration between first-principles and data-driven modeling // Comput. Chem. Eng. 2022. V. 166. Р. 107898.
  32. Rahmanian Koshkaki S., Allahyari Z., Oganov A.R., Solozhenko V.L., Polovov I.B., Belozerov A.S., Katanin A.A., Anisimov V.I., Tikhonov E.V., Qian G.-R., Maksimtsev K.V., Mukhamadeev A.S., Chukin A.V., Korolev A.V., Mushnikov N.V., Li H. Computational prediction of new magnetic materials // J. Chem. Phys. 2022. V. 157. Р. 124704.
  33. Zhang H. High-throughput Design of Magnetic Materials // Electron. Struct. 2021. V. 3. Р. 033001.
  34. Nelson J., Sanvito S. Predicting the Curie temperature of ferromagnets using machine learning // Phys. Rev. Mater. 2019. V. 3. Р. 104405.
  35. Silveyra J.M., Ferrara E., Huber D.L., Monson T.C. Soft magnetic materials for a sustainable and electrified world // Science. 2018. V. 362. P. 6413.
  36. Gheiratmand T., Hosseini H.R.M. Finemet nanocrystalline soft magnetic alloy: Investigation of glass forming ability, crystallization mechanism, production techniques, magnetic softness and the effect of replacing the main constituents by other elements // JMMM. 2016. V. 408. P. 177–192.
  37. Qi X., You J., Zhou J., Qiu K., Cui X., Tian J., Li B. A Review of Fe-Based Amorphous and Nanocrystalline Alloys: Preparations, Applications, and Effects of Alloying Elements // Phys Status Solidi A. 2023. V. 220. Р. 2300079.
  38. Hart G.L.W., Mueller T., Toher C., Curtarolo S. Machine learning for alloys // Nat. Rev. Mater. 2021. V. 6. P. 730–755.
  39. Lu Z., Chen X., Liu X., Lin D., Wu Y., Zhang Y., Wang H., Jiang S., Li H., Wang X., Lu Z. Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses // NPJ Comput. Mater. 2020. V. 6. Р. 187.
  40. Wang Y., Tian Y., Kirk T., Laris O., Ross J.H., Noebe R.D., Keylin V., Arróyave R. Accelerated design of Fe-based soft magnetic materials using machine learning and stochastic optimization // Acta Mater. 2020. V. 194. P. 144–155.
  41. Li X., Shan G., Shek C.H. Machine learning prediction of magnetic properties of Fe-based metallic glasses considering glass forming ability // J. Mater. Sci. Technol. 2022. V. 103. P. 113–120.
  42. Li X., Shan G., Pang S., Shek C.H. Efficient property-oriented optimization of magnetic high-entropy metallic glasses via a multi-stage design strategy // Appl. Mater. Today. 2023. V. 35. 101977.
  43. Nam C. Convolutional neural network guided prediction of saturation magnetic flux density of Fe-based metallic glasses // Comput. Mater. Sci. 2023. V. 225. Р. 112198.
  44. Pang B., Long Z., Long T., He R., Liu X., Pan M. Accelerated discovery of Fe-based amorphous/nanocrystalline alloy through explicit expression and interpretable information based on machine learning // Mater. Des. 2023. V. 231. Р. 112054.
  45. Nam C. Deep learning-based prediction of saturation magnetic flux density in Fe-based metallic glasses via transfer learning // Mater. Chem. Phys. 2024. V. 315. Р. 129076.
  46. Tang Y., Wan Y., Wang Z., Zhang C., Han J., Hu C., Tang C. Machine learning and Python assisted design and verification of Fe–based amorphous/nanocrystalline alloy // Mater. Des. 2022. V. 219. Р. 110726.
  47. Chang T.W., Liao K.W., Lin C.C., Tsai M.C., Cheng C.W. Predicting magnetic characteristics of additive manufactured soft magnetic composites by machine learning // Int. J. Adv. Manuf. Technol. 2021. V. 114. P. 3177–3184.
  48. Milyutin V.A., Bures R., Faberova M., Bircakova Z., Molcanova Z., Kunca B., Stashkova L.A., Kollar P., Fuzer J. Machine learning assisted optimization of soft magnetic properties in ternary Fe–Si–Al alloys // J. Mater. Res. Technol. 2024. V. 29. P. 5060–5073.
  49. Coey J.M.D. Hard magnetic materials: A perspective // IEEE Trans. Magn. 2011. V. 47. P. 4671–4681.
  50. Protasov A.V., Popov A.G., Volegov A.S., Gaviko V.S., Shitov A.V., Golovnya O.A. The Microstructure and Magnetic Properties of the Strip-Cast (Sm,Zr)(Fe,Co)10.3Ti0.7 Alloy // Phys. Met. Metallogr. 2023. V. 124. P. 15–21.
  51. Mohapatra J., Liu J.P. Rare-Earth-Free Permanent Magnets: The Past and Future // Handbook of Magnetic Materials. 2018. V. 27. P. 1–57.
  52. Huiyu W., Yuanhua R., Jianfeng P. NdFeB magnet composite design based on BP network / Proceedings — International Conference on Intelligent Computation Technology and Automation. 2008. P. 204–208.
  53. Cheng W. Prediction of magnetic remanence of NdFeB magnets by using novel machine learning intelligence approach — Support vector regression // Proceedings of 2014 IEEE 13th International Conference on Cognitive Informatics and Cognitive Computing. 2014. P. 431–435.
  54. Hosokawa H., Calvert E.L., Shimojima K. Machine learning prediction for magnetic properties of Sm-Fe-N based alloys produced by melt spinning // JMMM. 2021. V. 526. Р. 167651.
  55. Choudhary A.K., Kini A., Hohs D., Jansche A., Bernthaler T., Csiszár O., Goll D., Schneider G. Machine learning-based Curie temperature prediction for magnetic 14:2:1 phases // AIP Adv. 2023. V. 13. Р. 035112.
  56. Choudhary A.K., Hohs D., Jansche A., Bernthaler T., Goll D., Schneider G. A data-driven approach to predict the saturation magnetization for magnetic 14:2:1 phases from chemical composition // AIP Adv. 2024. V. 14. Р. 015060.
  57. Kini A., Kumar Choudhary A., Hohs D., Jansche A., Baumgartl H., Büttner R., Bernthaler T., Goll D., Schneider G. Machine learning-based mass density model for hard magnetic 14:2:1 phases using chemical composition-based features // Chem. Phys. Lett. 2023. V. 811.
  58. Möller J.J., Körner W., Krugel G., Urban D.F., Elsässer C. Compositional optimization of hard-magnetic phases with machine-learning models // Acta Mater. 2018. V. 153. P. 53–61.
  59. Park H.K., Lee J.H., Lee J., Kim S.K. Optimizing machine learning models for granular NdFeB magnets by very fast simulated annealing // Sci. Rep. 2021. V. 11.
  60. Xia W., Sakurai M., Balasubramanian B., Liao T., Wang R., Zhang C., Sun H., Ho K.M., Chelikowsky J.R., Sellmyer D.J., Wang C.Z. Accelerating the discovery of novel magnetic materials using machine learning–guided adaptive feedback // PNAS. 2022. V. 119(47).
  61. Giaremis S., Katsikas G., Sempros G., Gjoka M., Sarafidis C., Kioseoglou J. Ab initio, artificial neural network predictions and experimental synthesis of mischmetal alloying in Sm-Co permanent magnets // Nanoscale. 2022. V. 14. P. 5824–5839.
  62. Kovacs A., Fischbacher J., Oezelt H., Kornell A., Ali Q., Gusenbauer M., Yano M., Sakuma N., Kinoshita A., Shoji T., Kato A., Hong Y., Grenier S., Devillers T., Dempsey N.M., Fukushima T., Akai H., Kawashima N., Miyake T., Schrefl T. Physics-informed machine learning combining experiment and simulation for the design of neodymium-iron-boron permanent magnets with reduced critical-elements content // Front. Mater. 2023. V. 9.
  63. Nieves P., Arapan S., Maudes-Raedo J., Marticorena-Sánchez R., Del Brío N.L., Kovacs A., Echevarria-Bonet C., Salazar D., Weischenberg J., Zhang H., Vekilova O.Y., Serrano-López R., Barandiaran J.M., Skokov K., Gutfleisch O., Eriksson O., Herper H.C., Schrefl T., Cuesta-López S. Database of novel magnetic materials for high-performance permanent magnet development // Comput. Mater. Sci. V. 168. P. 188–202.
  64. Mal S., Sen P. Leveraging available data for efficient exploration of materials space using Machine Learning: A case study for identifying rare earth-free permanent magnets // JMMM. 2024. V. 589. Р. 171590.
  65. Liu R., Wang L., Xu Z., Qin C., Li Z., Yu X., Liu D., Gong H., Zhao T., Sun J., Hu F., Shen B. The magnetic properties prediction and composition design of La-Co substitution Sr-hexaferrite based on high-through experiments and machine learning // Mater. Today Commun. 2022. V. 32(2). Р. 103996.
  66. Filanovich A.N., Povzner A.A., Lukoyanov A.V. Machine learning prediction of thermal and elastic properties of double half-Heusler alloys // Mater. Chem. Phys. 2023. V. 306. Р. 128030.
  67. Mitra S., Ahmad A., Biswas S., Kumar Das A. A machine learning approach to predict the structural and magnetic properties of Heusler alloy families // Computational Materials Science. 2023. V. 216. P. 111836.
  68. Pant D., Pokharel S., Mandal S., Kc D.B., Pati R. DFT-aided machine learning-based discovery of magnetism in Fe-based bimetallic chalcogenides // Sci. Rep. 2023. V. 13. Р. 3277.
  69. Haenlein M., Kaplan A. A brief history of artificial intelligence: On the past, present, and future of artificial intelligence // Calif Manage Rev. 2019. V. 61. P. 5–14.
  70. Brown T., Mann B., Ryder N., Subbiah M., Kaplan J.D., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A., Agarwal S., Herbert-Voss A., Krueger G., Henighan T., Child R., Ramesh A., Ziegler D., Wu J., Winter C., Hesse C., Chen M., Sigler E., Litwin M., Gray S., Chess B., Clark J., Berner C., McCandlish S., Radford A., Sutskever I., Amodei D. Language Models are Few-Shot Learners // Advances in Neural Information Processing Systems. 2020. V. 33. P. 1877–1901.
  71. Oh K.S., Jung K. GPU implementation of neural networks // Pattern Recognit. 2004. V. 37. P. 1311–1314.
  72. Chen T., Guestrin C. XGBoost: A scalable tree boosting system // Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016. V. 13. P. 785–794.
  73. Hinton G.E., Salakhutdinov R.R. Reducing the Dimensionality of Data with Neural Networks // Science. 2006. V. 313. P. 504–507.
  74. Wang A.Y.T., Kauwe S.K., Murdock R.J., Sparks T.D. Compositionally restricted attention-based network for materials property predictions // NPJ Comput. Mater. 2021. V. 7. P. 77.
  75. Dunn A., Wang Q., Ganose A., Dopp D., Jain A. Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm // NPJ Comput. Mater. 2020. V. 6. P. 138.
  76. Curtarolo S., Setyawan W., Hart G.L.W., Jahnatek M., Chepulskii R.V., Taylor R.H., Wang S., Xue J., Yang K., Levy O., Mehl M.J., Stokes H.T., Demchenko D.O., Morgan D. AFLOW: An automatic framework for high-throughput materials discovery // Comput. Mater. Sci. 2012. V. 58. P. 218–226.
  77. Jain A., Ong S.P., Hautier G., Chen W., Richards W.D., Dacek S., Cholia S., Gunter D., Skinner D., Ceder G., Persson K.A. The materials project: A materials genome approach to accelerating materials innovation // APL Mater. 2013. V. 1. № 1. Р. 011002.
  78. Fan X., Chen S., Steingrimsson B., Xiong Q., Li W., Liaw P.K. Dataset for Fracture and Impact Toughness of High-Entropy Alloys // Sci. Data. 2023. V. 10. P. 37.
  79. Zhang Z., Tang H., Xu Z. Fatigue database of complex metallic alloys // Sci. Data 2023. V. 1. 447.
  80. Strieth-Kalthoff F., Sandfort F., Kühnemund M., Schäfer F.R., Kuchen H., Glorius F. Machine Learning for Chemical Reactivity: The Importance of Failed Experiments // Angew. Chem. Int. Ed. 2022. V. 61. № 29. Р. e202204647.
  81. Raccuglia P., Elbert K.C., Adler P.D.F., Falk C., Wenny M.B., Mollo A., Zeller M., Friedler S.A., Schrier J., Norquist A.J. Machine-learning-assisted materials discovery using failed experiments // Nature. 2016. V. 533. P. 73–76.
  82. Kobori J., Takahashi Y., Fujiwara K. The international round robin test of magnetostriction measurement of grain-oriented electrical steel by means of a single sheet tester and an optical sensor // JMMM. 2020. V. 513. Р. 166541.
  83. Sasidhar K.N., Siboni N.H., Mianroodi J.R., Rohwerder M., Neugebauer J., Raabe D. Enhancing corrosion-resistant alloy design through natural language processing and deep learning // Sci. Adv. 2023. V. 9. № 32. Р. 7992.
  84. Oviedo F., Ferres J.L., Buonassisi T., Butler K.T. Interpretable and Explainable Machine Learning for Materials Science and Chemistry // Acc. Chem. Res. 2022. V. 3. P. 597–607.
  85. Zhang Y.F., Ren W., Wang W.L., Li N., Zhang Y.X., Li X.M., Li W.H. Interpretable hardness prediction of high-entropy alloys through ensemble learning // J. Alloys Compd. 2023. V. 945(12). P. 169329.
  86. Lundberg S.M., Lee S.I. A unified approach to interpreting model predictions // Advances in Neural Information Processing Systems. 2017. P. 4766–4775.
  87. Ribeiro M.T., Singh S., Guestrin C. “Why Should I Trust You?” Explaining the Predictions of Any Classifier // Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Demonstrations Session. 2016. P. 97–101.
  88. De Castro P.B., Terashima K., Yamamoto T.D., Hou Z., Iwasaki S., Matsumoto R., Adachi S., Saito Y., Song P., Takeya H., Takano Y. Machine-learning-guided discovery of the gigantic magnetocaloric effect in HoB2 near the hydrogen liquefaction temperature // NPG Asia Mater. 2020. V. 12. Р. 35.
  89. Karniadakis G.E., Kevrekidis L.L., Perdikaris P., Wang S., Yang L. Physics-informed machine learning // Nat. Rev. Phys. 2021. V. 3. № 6. P. 422–440.
  90. Khatamsaz D., Neuberger R., Roy A.M., Zadeh S.H., Otis R., Arróyave R. A physics informed bayesian optimization approach for material design: application to NiTi shape memory alloys // NPJ Comput. Mater. 2023. V. 9. P. 221.
  91. Ghosh A. Towards physics-informed explainable machine learning and causal models for materials research // Comput. Mater. Sci. 2024. V. 233. Р. 112740.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Number of articles in the Web of Science core collection for the query “machine learning + materials science”. A correction factor of 0.8 was used to compensate for search errors.

下载 (14KB)
3. Fig. 2. Plan of a standard research aimed at developing new materials by developing models to predict their properties.

下载 (22KB)
4. Fig. 3. Classification of machine learning algorithms for solving regression problems.

下载 (2KB)