Decomposition processes of the metastable β-phase in titanium alloys of the transition class

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The structural and phase transformations occurring during the decomposition of a metastable β-solid solution upon aging in titanium alloys of transition class Ti–4Mo and VST3553 (Ti–Al–V–5Mo–Cr) have been analyzed. The phases formed during aging, the morphology, and temperature ranges of their precipitation have been determined by structural analysis methods. The formation of an athermal ω-phase during quenching and its subsequent dissolution during heating have been shown; the formation of a transient metastable Oʹʹ-phase, which is intermediate in the β → ωiso → α-transformation, has been established; and the precipitation of the Oʹʹ-phase has been recorded in the presence of an isothermal ω-phase in the structure.

Texto integral

Acesso é fechado

Sobre autores

А. Popov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: a.o.petrova@urfu.ru
Rússia, Ekaterinburg; Ekaterinburg

А. Petгova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Autor responsável pela correspondência
Email: a.o.petrova@urfu.ru
Rússia, Ekaterinburg; Ekaterinburg

I. Narigina

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: a.o.petrova@urfu.ru
Rússia, Ekaterinburg

N. Popov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: a.o.petrova@urfu.ru
Rússia, Ekaterinburg; Ekaterinburg

R. Petrov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: a.o.petrova@urfu.ru
Rússia, Ekaterinburg; Ekaterinburg

К. Lugovaya

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: a.o.petrova@urfu.ru
Rússia, Ekaterinburg; Ekaterinburg

Bibliografia

  1. Багаряцкий Ю.А., Носова Г.И. Превращение β → ω в титановых сплавах при закалке — мартенситное превращение особого рода // ФММ. 1962. № 13(3). С. 415–425.
  2. Banerjee S., Tevari R., Dey G.K. Omega phase transformation — morphologies and mechanisms // Inern. J. Mater. Research (formerly Z. Metallkd.). 2006. V. 97. P. 963–977.
  3. Banerjee S., Mukhopadhyay P. Phase transformations: examples from titanium and zirconium alloys // Pergamon Mater. Ser. Elsevier. 2007. V. 12. P. 813.
  4. Šmilauerová J., Harcuba P., Stráský J., Stráská J., Janecěk M., Pospíšil J., Kužel R., Brunátová T., Holý V., Ilavský J. Ordered array of ω particles in β-Ti matrix studied by small-angle X-ray scattering // Acta Mater. 2014. V. 81. P. 71–82.
  5. Zheng Y., Williams R.E.A., Wang D., Shi R., Nag S., Kami P., Sosa J.M., Banerjee R., Wang Y., Fraser H.L. Role of omega phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys // Acta Mater. 2016. V. 103. P. 850–858.
  6. Zheng Y., Williams R.E.A., Sosa J.M., Alam T., Wang Y., Banerjee R., Fraser H.L. The indirect influence of the ω phase on the degree of refinement of distributions of the α phase in metastable β-Titanium alloys // Acta Mater. 2016. V. 103. P. 165–173.
  7. Tong L., Kent D., Sha G., Stephenson L.T., Ceguerra A.V., Ringer S.P., Dargusch M.S., Cairney J.M. New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys // Acta Mater. 2016. V. 106. P. 353–366.
  8. Banerjee S., Tewari R., Mukhopadhyay P. Coupling of displacive and replacive ordering // Prog. Mater. Sci. 1997. V. 42. P. 109–123.
  9. Zhang Y., Xiang S., Tan Y.B., Ji X.M. Study on ω-assisted α nucleation behavior of metastable β-Ti alloys from phase transformation mechanism // Journal of Alloys and Compounds. 2022. V. 890. P. 161686.
  10. Попов А.А. Процессы распада метастабильной β-фазы в высоколегированных титановых сплавах // ФММ. 1993. № 53. С. 147–156.
  11. Ильин А.А. Механизм и кинетика фазовых и структурных превращений в титановых сплавах. М.: Наука, 1994. 304 с.
  12. Li Tong, Kent D., Sha G., Cairney J. M., Dargusch M.S. The role of ω in the precipitation of α in near-β Ti alloys // Scripta Mater. 2016. V. 117. P. 92–95.
  13. Lin Ch., Yin G., Zhang A., Zhao Y., Li Q. Simple models to account for the formation and decomposition of athermal ω phase in titanium alloys // Scripta Mater. 2016. V. 117. P. 28–31.
  14. Zháňal P., Harcuba P., Hájek M., Smola B., Stráský J., Šmilauerová J., Veselý J., Janeček M. Evolution of ω phase during heating of metastable β titanium alloy Ti–15Mo // Mater. Sci. 2018. V. 5. P. 837–845.
  15. Li T., Lai M., Kostka A., Salomon S., Zhang S., Somsen C., Dargusch M. S., Kent D. Composition of the nanosized orthorhombic Oʹ phase and its direct transformation to fine α during ageing in metastable β-Ti alloys // Scripta Mater. 2019. V. 170. P. 183–188.
  16. Zháňal P., Harcuba P., Stráský J., Šmilauerová J., Beran P., Hansen TC., Seiner H., Janeček M. Transformation pathway upon heating of metastable β titanium alloy Ti–15Mo investigated by neutron diffraction // Materials. 2019. V. 12. P. 3570.
  17. Zheng Y., Banerjee D., Fraser H.L. A nano-scale instability in the β-phase of dilute Ti–Mo alloys // Scripta Mater. 2016. V. 116. P.131–134.
  18. Zheng Y., Williams R.E.A., Fraser H.L. Characterization of a previously unidentified ordered orthorhombic metastable phase in Ti–5Al–5Mo–5V–3Cr // Scripta Mater. 2016. V. 113. P. 202–205.
  19. Zheng Y., Williams R.E.A., Nag S., Banerjee R., Fraser H.L., Banerjee D. The effect of alloy composition on instabilities in the β phase of titanium alloys // Scripta Mater. 2016. V. 116. P. 49–52.
  20. Song В., Chen Y., Xiao W., Zhou L., Ma Ch. Formation of intermediate phases and their influences on the microstructure of high strength near-β titanium alloy // Mater. Sci. Eng. A. 2020. V. 793. P. 139886.
  21. Тяпкин Ю.Д. Электронография (применение метода диффузного рассеяния электронов в физическом металловедении) / Сб. “Итоги науки и техники”, серия “Металловедение и термическая обработка”. 1977. Т. 11. С. 152–214.
  22. Коллингз Е.В. Физическое металловедение титановых сплавов / Пер. с англ. под ред. [и с предисл.] Б. И. Веркина, В. А. Москаленко. М.: Металлургия, 1988. 224 с.
  23. Петрова А.О., Попов А.А., Луговая К.И., Жилякова М.А. Образование промежуточных фаз при распаде метастабильной β-фазы в титановых сплавах переходного класса // МИТОМ. 2022 (806). № 8. С. 27–32.
  24. Antonov S., Shi R., Li D., Kloenne Z., Zheng Y., Fraser H.L., Raabe D., Gault B. Nucleation and growth of α phase in a metastable β-Titanium Ti–5Al–5Mo–5V–3Cr alloy: Influence from the nano-scale, ordered-orthorhombic O″ phase and α compositional evolution // Scripta Mater. 2021. V. 194. P. 113672.
  25. Zheng Y., Antonov S., Qiang F., Banerjee R., Banerjee D., Fraser H.L. Shuffle-induced modulated structure and heating-induced ordering in the metastable β-titanium alloy, Ti–5Al–5Mo–5V–3Cr // Scripta Mater. 2020. V. 176. P. 7–11.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Sections of diffraction patterns of VST3553 (a) and Ti–14Mo (b) alloys after quenching.

Baixar (10KB)
3. Fig. 2. Electron diffraction patterns of VST3553 (a) and Ti–14Mo (b) alloys in the quenched state.

Baixar (8KB)
4. Fig. 3. Heating thermograms of hardened alloys VST3553 (a) and Ti–14Mo (b).

Baixar (16KB)
5. Fig. 4. Sections of diffraction patterns of VST3553 (a) and Ti–14Mo (b) alloys quenched and aged at different temperatures.

Baixar (87KB)
6. Fig. 5. Change in the crystal lattice period of the βm phase in VST3553 (a) and Ti–14Mo (b) alloys after quenching and aging at different temperatures.

Baixar (15KB)
7. Fig. 6. Dark-field images of the microstructure in the reflections [021]ω (a), [002]Oʹʹ (b) and [010]α (c) of the VST3553 alloy after quenching and aging at 350°C (TEM).

Baixar (49KB)
8. Fig. 7. Microhardness of VST3553 (a) and Ti–14Mo (b) alloys after quenching and aging at different temperatures.

Baixar (13KB)