Использование явления реювенилизации для получения вегетативного потомства древесных
- Авторы: Шмаков В.Н.1, Бельков В.И.1,2, Константинов Ю.М.1,2
-
Учреждения:
- Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук
- Федеральное государственное бюджетное образовательное учреждение высшего образования “Иркутский государственный университет”
- Выпуск: Том 71, № 6 (2024)
- Страницы: 697-710
- Раздел: ОБЗОРЫ
- URL: https://gynecology.orscience.ru/0015-3303/article/view/648254
- DOI: https://doi.org/10.31857/S0015330324060032
- EDN: https://elibrary.ru/MAWCHU
- ID: 648254
Цитировать
Аннотация
Вегетативное размножение обеспечивает возможность масштабирования ценного растительного материала в наиболее короткие сроки. Особую важность оно приобретает при разведении древесных культур с сохранением ценных биологических и морфологических сортовых особенностей отдельных особей. Использование такого подхода позволяет быстро размножать особо ценные произрастающие в парках и лесах растения, в то время как при семенном воспроизводстве не сохраняются их ценные наследственные признаки. В связи с этим создание и совершенствование надежных способов вегетативного размножения древесных видов не теряет своей актуальности. Как известно, вегетативное размножение деревьев достигается в ювенильной фазе развития, а не на стадии зрелости, что сильно ограничивает использование этого подхода. Такая ситуация может быть преодолена путем применения технологий, основанных на активном использовании реювенилизации – явлении, биологическая природа которого на сегодняшний день остается недостаточно изученной. Тем не менее, накоплен значительный исследовательский опыт инициации реювенилизации, т.е. проведения процедур искусственного возвращения взрослых растений или отдельных их частей в юное состояние. В настоящей статье приводится обзор технологий, позволяющих реализовать процесс переключения стратегии развития растения с фазы зрелости к ювенильному состоянию. К ним относятся культивирование меристем, химическая обработка растительного материала, сильная обрезка и хеджирование, использование корневых отпрысков и коппинг, инициация развития пазушных и эпикормических почек, прививка и микропрививка, повторное субкультивирование, а также соматический эмбриогенез. Для дальнейшего успешного развития этого направления требуется применение комплексного подхода, основанного на совокупности омиксных технологий и методов молекулярной генетики, молекулярной и клеточной биологии.
Ключевые слова
Полный текст

Об авторах
В. Н. Шмаков
Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук
Автор, ответственный за переписку.
Email: vladwork70@gmail.com
Россия, Иркутск
В. И. Бельков
Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук; Федеральное государственное бюджетное образовательное учреждение высшего образования “Иркутский государственный университет”
Email: vladwork70@gmail.com
Россия, Иркутск; Иркутск
Ю. М. Константинов
Федеральное государственное бюджетное учреждение науки Сибирский институт физиологии и биохимии растений Сибирского отделения Российской академии наук; Федеральное государственное бюджетное образовательное учреждение высшего образования “Иркутский государственный университет”
Email: vladwork70@gmail.com
Россия, Иркутск; Иркутск
Список литературы
- Giri C.C., Shyamkumar B., Anjaneyulu C. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview // Trees. 2004. V. 18. P. 115. https://doi.org/10.1007/s00468-003-0287-6
- Global Forest Resources Assessment 2020: Main report. Rome: FAO. 2020. 186 p. https://doi.org/10.4060/ca9825en
- El-Kassaby Y.A., Klápště J. Genomic selection and clonal forestry revival // Proc. 3rd international conference of the IUFRO unit 2.09.02 on “Woody plant production integrating genetic and vegetative propagation technologies” September 8-12, 2014. / Eds. Park Y.S., Bonga J.M. Vitoria-Gasteiz. Spain. 2014. P. 98.
- Ewald D. Micropropagation of Larix species via organogenesis // Protocols for Micropropagation of Woody Trees and Fruits / Eds. Jain S.M., Häggman H. Springer. 2007. P. 125. https://doi.org/10.1007/978-1-4020-6352-7_12
- Williams C.G., Savolainen O. Inbreeding depression in conifers: implications for using selfing as a breeding strategy // For. Sci. 1996. V. 42. P. 102. https://doi.org/10.1093/FORESTSCIENCE/42.1.102
- Bonga J.M. Conifer clonal propagation in tree improvement programs // Vegetative propagation of forest trees / Eds. Park Y.S., Bonga J.M., Moon H.K. National Institute of Forest Science (NIFoS). Seoul. Korea. 2016. P. 3.
- Krasnoperova V., Bukharina I., Islamova N. Features introduction to the culture in vitro of coniferous trees // AgroEcoInfo. Electronic science-productive magazine. 2016. V. 24. № 2. (In Russian) https://agroecoinfo.ru/STATYI/2016/2/st_211.doc
- Isah T. Explant rejuvenation in the clonal propagation of woody plants // Plant Cell, Tissue Organ Cult. 2023. V. 154. P. 209. https://doi.org/10.1007/s11240-023-02520-8
- Park Y.S., Bonga J.M. Conifer micropropagation: its function in tree improvement programs // Micropropagation of Woody Plants / Eds. Ahuja M.R. Kluwer Academic. Dordrecht. 1992. P. 457. https://doi.org/10.1007/978-94-015-8116-5_27
- von Aderkas P., Bonga J.M. Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment // Tree Physiol. 2000. V. 20. P. 921. https://doi.org/ 10.1093/treephys/20.14.921
- Bonga J.M. A comparative evaluation of the application of somatic embryogenesis, rooting of cuttings, and organogenesis of conifers // Can. J. For. Res. 2015. V. 45. P. 379. https://doi.org/10.1139/cjfr-2014-0360
- Bonga J.M., von Aderkas P. Rejuvenation of tissues from mature conifers and its implications for propagation in vitro // Clonal Forestry I, Genetics and Biotechnology / Eds. Ahuja M.R., Libby W.J. Springer-Verlag. Berlin. Heidelberg. 1993. P. 182. https://doi.org/10.1007/978-3-642-84175-0_12
- Park Y.S. Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations // Ann. For. Sci. 2002. V. 59. P. 651. https://doi.org/10.1051/forest:2002051
- Bonga J.M., MacDonald J.E., von Aderkas P. Cloning of conifers, with emphasis on mature trees. // Advances in plant biotechnology / Eds. Rao G.P., Zhao Y., Radchuck V.V., Batnagar S.K. Studium Press LLC. Houston. 2008. P. 475.
- Bonga J.M., Klimaszewska K., von Aderkas P. Recalcitrance in clonal propagation, in particular of conifers // Plant Cell, Tissue Organ Cult. 2010. V. 100. P. 241. https://doi.org/10.1007/s11240-009-9647-2
- Trontin J-F., Aronen T., Hargreaves C., Montalbán I.A., Moncaleán P., Reeves C., Quoniou S., Lelu-Walter M.-A., Klimaszewska K. International effort to induce somatic embryogenesis in adult pine trees // Vegetative propagation of forest trees / Eds. Park Y.S., Bonga J.M., Moon H.K. National Institute of Forest Science (NIFoS). Seoul. Korea. 2016. P. 211.
- Wang Y., Yao R. Optimization of rhizogenesis for in vitro shoot culture of Pinus massoniana Lamb // J. For. Res. 2019. V. 32. P. 203. https://doi.org/10.1007/s11676-019-01076-8
- Zarei M., Salehi H., Jowkar A. Controlling the barriers of cloning mature Picea abies (L.) H. Karst. via tissue culture and co-cultivation with Agrobacterium rhizogenes // Trees. 2020. V. 34. P. 637. https://doi.org/10.1007/s00468-019-01945-z
- Beck S.L., Dunlop R., van Staden J. Rejuvenation and micropropagation of adult Acacia mearnsii using coppice material // Plant Growth Regul. 1998. V. 26. P. 149. https://doi.org/10.1023/A:1006179620554
- Zhang Z., Sun Y., Li Y. Plant rejuvenation: from phenotypes to mechanisms // Plant Cell Reports. 2020. V. 39. P. 1249. https://doi.org/10.1007/s00299-020-02577-1
- Bonga J.M. Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers? // Trees. 2017. V. 31. P. 781. https://doi.org/10.1007/s00468-016-1509-z
- Mikhalevskaya O.B., Shabasheva A.A. Cyclic rejuvenation in the development of shoots of canary island pine (Pinus canariensis C. Sm.) // Russ. J. Dev. Biol. 2013. V. 44. P. 19. https://doi.org/10.1134/S1062360412050062
- Vidoy-Mercado I., Narváez I., Palomo-Ríos E., Litz R.E., Barcelу-Muсoz A., Pliego-Alfaro F. Reinvigoration/rejuvenation induced through micrografting of tree species: signaling through graft union // Plants. 2021. V. 10. P. 1197. https://doi.org/10.3390/plants10061197
- Birnbaum K.D., Roudier F. Epigenetic memory and cell fate reprogramming in plants // Regeneration. 2017. V. 4. P. 15. https://doi.org/10.1002/reg2.73.eCollection 2017 Feb
- Ratclife O.J., Amaya I., Vincent C.A., Rothstein S., Carpenter R., Coen E.S., Bradley D.J. A common mechanism controls the life cycle and architecture of plants // Development. 1998. V. 125. P. 1609. https://doi.org/10.1242/dev.125.9.1609
- Moon H.K., Park S.Y., Kim Y.W., Kim S.H. Somatic embryogenesis and plantlet production using rejuvenated tissues from serial grafting of a mature Kalopanax septemlobus tree // In Vitro Cell Dev. Biol. Plant. 2008. V. 44. P. 119. https://doi.org/10.1007/s11627-008-9122-5
- Greenwood M.S., Day M.E., Schatz J. Separating the effects of tree size and meristem maturation on shoot development of grafted scions of red spruce (Picea rubens Sarg.) // Tree Physiol. 2010. V. 30. P. 459. https://doi.org/10.1093/treephys/tpq004
- Read P.E., Bavougian C.M. In vitro rejuvenation of woody species // Protocols for micropropagation of selected economically-important horticultural plants. Methods in molecular biology. V. 994 / Eds. Lambardi M. et al. Springer Science Business Media. New York. 2013. P. 383. https://doi.org/10.1007/978-1-62703-074-8_30
- Nascimento B., Sá A.C.S., Lemos L.B.D., Rosa D.P.D., Pereira M.D.O., Navroski M.C. Three epicormic shoot techniques in I. paraguariensis mother trees and its cutting according to the material rejuvenation degree // Cerne. 2018. V. 24. P. 240. https://doi.org/10.1590/01047760201824032584
- Salomão L.C.C., Siqueira D.L.D., Silva D.F.P.D. Production of ‘Ubá’ mango tree submitted to rejuvenation pruning and fertilized with nitrogen // Revista Brasileira De Fruticultura. 2018. V. 40. P. e812. https://doi.org/ 10.1590/0100-29452018812
- Massoumi M., Krens F.A., Visser R.G.F., De Klerk G.M. Azacytidine and miR156 promote rooting in adult but not in juvenile Arabidopsis tissues // J. Plant Physiol. 2017. V. 208. P. 52. https://doi.org/10.1016/j.jplph.2016.10.010
- Irish E.E., McMurray D. Rejuvenation by shoot apex culture recapitulates the developmental increase of methylation at the maize gene Pl-Blotched // Plant Mol. Biol. 2006. V. 60. P. 747. https://doi.org/10.1007/s11103-005-5620-6
- Stange L. Cellular interactions during early differentiation // Cellular Interactions. Encyclopedia of Plant Physiology. V. 17 // Eds. Linskens H.F., Heslop-Harrison J. Springer. Berlin. Heidelberg. 1984. P. 424. https://doi.org/10.1007/978-3-642-69299-4_20
- Burrows G.E. Leaf axil anatomy in the Araucariaceae // Aust. J. Bot. 1987. V. 35. P. 631. https://doi.org/10.1071/bt9870631
- Soyars C.L., James S.R., Nimchuk Z.L. Ready, aim, shoot: stem cell regulation of the shoot apical meristem // Curr. Opin. Plant Biol. 2016. V. 29. P. 163. https://doi.org/10.1016/j.pbi.2015.12.002
- Monteuuis O. Rejuvenation of a 100-year-old Sequoiadendron giganteum through in vitro meristem culture. I. Organogenic and morphological arguments // Physiol. Plant. 1991. V. 81. P. 111. https://doi.org/10.1111/j.1399-3054.1991.tb01721.x
- Prehn D., Serrano C., Mercado A., Stange C., Barrales L., Arce-Johnson P. Regeneration of whole plants from apical meristems of Pinus radiata // Plant Cell, Tissue Organ Cult. 2003. V. 73. P. 91. https://doi.org/10.1023/A:1022615212607
- Ballester A., Corredoira E., Vieitez A.M. Limitations of somatic embryogenesis in hardwood trees // Vegetative propagation of forest trees / Eds. Park Y.S., Bonga J.M., Moon H.K. National Institute of Forest Science (NIFoS). Seoul. Korea. 2016. P. 56.
- Bonga J.M. Adventitious shoot formation in cultures of immature female strobili of Larix decidua // Physiol. Plant. 1984. V. 62. P. 416. https://doi.org/10.1111/j.1399-3054.1984.tb04595.x
- Wang K.X., Karnosky D.F., Timmis R. Adventitious bud production from mature Picea abies: rejuvenation associated with female strobili formation // Woody plant biotechnology / Eds. Ahuja M.R. Plenum Press. New York. 1991. P. 83. https://doi.org/ 10.1007/978-1-4684-7932-4_11
- Cardoso J.C., Martinelli A.P., Latado R.R. Somatic embryogenesis from ovaries of sweet orange cv. Tobias // Plant Cell, Tissue Organ Cult. 2012. V. 109. P. 171. https://doi.org/10.1007/s11240-011-0073-x
- Michaux-Ferriére N., Grout H., Carron M.P. Origin and ontogenesis of somatic embryos in Hevea brasiliensis (Euphorbiaceae) // Am. J. Bot. 1992. V. 79. P. 174. https://doi.org/10.2307/2445105
- Miyashima S., Sebastian J., Lee J.-Y., Helariutta Y. Stem cell function during plant vascular development // EMBO J. 2013. V. 32. P. 178. https://doi.org/10.1038/emboj.2012.301
- Sugimoto K., Jiao Y., Meyerowitz E.M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway // Dev. Cell. 2010. V. 18. P. 463. https://doi.org/10.1016/j.devcel.2010.02.004
- Wu H., Hu Z.-H. Comparative anatomy of resin ducts of the Pinaceae // Trees. 1997. V. 11. P. 135. https://doi.org/ 10.1007/s004680050069
- Bonga J.M. Organogenesis in vitro of tissues from mature conifers // In Vitro. 1981. V. 17. P. 511. https://doi.org/10.2307/4292533
- Pulianmackal A.J., Kareem A.V.K., Durgaprasad K., Trivedi Z.B., Prasad K. Competence and regulatory interactions during regeneration in plants // Front. Plant Sci. 2014. V. 5. P. 1. https://doi.org/10.3389/fpls.2014.00142
- Steward F.C., Mapes M.O., Mears K. Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cell // Am. J. Bot. 1958. V. 45. P. 705. https://doi.org/ 10.1002/j.1537-2197.1958.tb10599.x
- Greenwood M.S. Rejuvenation of forest trees // Plant Growth Regul. 1987. V. 6. P. 1. https://doi.org/10.1007/BF00043947
- Benson E.E. Special symposium: In vitro plant recalcitrance. In vitro plant recalcitrance: an introduction // In Vitro Cell Dev. Biol. Plant. 2000. V. 36. P. 141. https://doi.org/10.1007/s11627-000-0029-z
- Zimmerman R.H., Hackett W.P., Pharis R.P. Hormonal aspects of phase change and precocious flowering // Hormonal Regulation of Development III / Eds. Pharis R.P., Reid D.M. Springer-Verlag. Heidelberg. 1985. P. 79. https://doi.org/10.1007/978-3-642-67734-2_4
- Niu S.H., Li Z.X., Yuan H.W., Fang P., Chen X.Y., Li W. Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco // J. Exp. Bot. 2013. V. 64. P. 3411. https://doi.org/10.1093/jxb/ert186
- Ivanchenko M.G., Muday G.K., Dubrovsky J.G. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana // Plant J. 2008. V. 55. P. 335. https://doi.org/10.1111/j.1365-313X.2008.03528.x
- Poethig R.S. Phase change and the regulation of shoot morphogenesis in plants // Sci. 1990. V. 250. P. 923. https://doi.org/10.1126/science.250.4983.923
- Kiyosue T., Takano K., Kamada H., Harada H. Induction of somatic embryogenesis in carrot by heavy metal ions // Can. J. Bot. 1990. V. 68. P. 2301. https://doi.org/10.1139/b90-293
- Rout G.R., Samantaray S., Das P. Somatic embryogenesis and plant regeneration from callus culture of Acacia catechu - a multipurpose leguminous tree // Plant Cell, Tissue Organ Cult. 1995. V. 42. P. 283. https://doi.org/ 10.1007/BF00030000
- McCabe P.F., Valentine T.A., Forsberg L.S., Pennell R.I. Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot // Plant Cell. 1997. V. 9. P. 2225. https://doi.org/10.1105/tpc.9.12.2225
- Schmidt E.D.L., de Jong A.J., de Vries S.C. Signal molecules involved in plant embryogenesis // Plant Mol. Biol. 1994. V. 26. P. 1305. https://doi.org/ 10.1007/BF00016476
- Shinshi H., Mohnen D., Meins F.Jr. Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin // Proc. Natl. Acad. Sci. U.S.A. 1987. V. 84. P. 89. https://doi.org/ 10.1073/pnas.84.1.89
- De Jong A.J., Cordewener J., Lo Schiavo F., Terzi M., Vandekerckhove J., Van Kammeren A., De Vries S.C. A carrot somatic embryo mutant is rescued by chitinase // Plant Cell. 1992. V. 4. P. 425. https://doi.org/10.2307/3869444
- Pittock C., Weinman J.J., Rolfe B.G. The activity of a tobacco basic chitinase promotor in transgenic white clover provides insights into plant development and symbiosis // Aust. J. Plant Physiol. 1997. V. 24. P. 555. https://doi.org/10.1071/PP97019
- Mo L.H., Egertsdotter U., von Arnold S. Secretion of specific extracellular proteins by somatic embryos of Picea abies is dependent on embryo morphology // Ann. Bot. 1996. V. 77. P. 143. https://doi.org/10.1006/anbo.1996.0016
- Mason W.L., Menzies M.I., Biggin, P. A comparison of hedging and repeated cutting cycles for propagating clones of Sitka spruce // Forestry. 2002. V. 75. P. 149. https://doi.org/10.1093/forestry/75.2.149
- Mitchell R.G., Zwolinski J., Jones N.B. A review on the effects of donor maturation on rooting and field performance of conifer cuttings // Southern African Forestry J. 2004. V. 201. P. 53. https://doi.org/10.1080/20702620.2004.10431774
- Masaka K., Torita H., Kon H., Fukuchi M. Seasonality of sprouting in the exotic tree Robinia pseudoacacia L. in Hokkaido, northern Japan // J. For. Res. 2017. V. 20. P. 386. https://doi.org/10.1007/s10310-015-0488-z
- Clapa D., Fira A. Tissue culture and ex-vitro acclimation of Rhododendron sp // Bulletin University of Agricultural Sciences and Veterinary Medicine CLUJ-NAPOCA. 2007. V. 64. P. 39. https://doi.org/10.15835/buasvmcn-hort:1899
- St. Clair J.B., Kleinschmit J., Svolba J. Juvenility and serial vegetative propagation of Norway spruce clones (Picea abies Karst.) // Silvae Genet. 1985. V. 34. P. 42.
- Crawford B.C.W., Sewell J., Golembeski G., Roshan C., Long J.A., Yanofsky M.F. Genetic control of distal stem cell fate within root and embryonic meristems // Sci. 2015. V. 347. P. 655. https://doi.org/10.1126/science.aaa0196
- Economou A.S., Spanoudaki M.J. Regeneration in vitro of oleaster Elaeagnus angustifolia L.) from shoot tips of mature trees // Acta Hortic. 1988. V. 227. P. 363. https://doi.org/10.17660/ActaHortic.1988.227.66
- Minghe L., Faxin H. Performance of Chinese-fir (Cunninghamia lanceolata (Lamb.) Hook.) plantlets from upper-crown and basal origins as modified by grafting and development as buried ramets before explant harvest // Silvae Genet. 2001. V. 50. P. 37.
- Boulay M. Conifer micropropagation: applied research and commercial aspects // Cell and tissue culture in forestry, case histories: gymnosperms, angiosperms and palms. V. 3 / Eds. Bonga J.M., Durzan D.J. Martinus Nijhoff Publishers. Dordrecht. 1987 P. 185.
- Meier A.R., Saunders M.R., Michler C.H. Epicormic buds in trees: a review of bud establishment, development and dormancy release // Tree Physiol. 2012. V. 32. P. 565. https://doi.org/10.1093/treephys/tps040
- Harmer R. Production and use of epicormic shoots for the vegetative propagation of mature oak // Forestry. 1988. V. 61. P. 305. https://doi.org/10.1093/forestry/61.4.305-a
- Brand M.H., Lineberger R.D. In vitro rejuvenation of Betula (Betulaceae): morphological evaluations // Am. J. Bot. 1992. V. 79. P. 618. https://doi.org/ 10.2307/2444877
- Henry P.H., Preece J.E. Production and rooting of shoots generated from dormant stem sections of Acer species // Hort. Sci. 1997. V. 32. P. 1274. https://doi.org/10.21273/HORTSCI.32.7.1274
- Vieitez A.M., Corredoira C., Ballester A., Muñoz F., Durán J., Ibarra M. In vitro regeneration of the important North American oak species Quercus alba, Quercus bicolor and Quercus rubra // Plant Cell, Tissue Organ Cult. 2009. V. 98. P. 135. https://doi.org/ 10.1007/s11240-009-9546-6
- Selby C., Watson S., Harvey B.M.R. Morphogenesis in Sitka spruce (Picea sitchensis (Bong.) Carr.) bud cultures-tree maturation and explants from epicormic shoots // Plant Cell, Tissue Organ Cult. 2005.V. 83. P. 279. https://doi.org/ 10.1007/s11240-005-7016-3
- Cortizo M., De Diego N., Moncalean P., Ordas R.J. Micropropagation of adult Stone Pine (Pinus pinea L.) // Trees. 2009. V. 23. P. 835. https://doi.org/10.1007/s00468-009-0325-0
- De Diego N., Montalban I.A., Fernandez de Larrinoa E., Moncalean P. In vitro regeneration of Pinus pinaster adult trees // Can. J. For. Res. 2008. V. 38. P. 2607. https://doi.org/10.1139/x08-102
- De Diego N., Montalban I.A., Moncalean P. In vitro regeneration of adult Pinus sylvestris L. trees // South African J. Bot. 2010. V. 76. P. 158. https://doi.org/10.1016/j.sajb.2009.09.007
- Wan Y., Fan F. Direct organ regeneration from apical shoot buds of adult Pinus massoniana Lamb // In Vitro Cell. Dev. Biol. Plant. 2024. https://doi.org/10.1007/s11627-024-10415-2
- Boulay M. In vitro propagation of tree species // Plant tissue and cell culture / Eds. Green C.E., Somers D.A., Hackett W.P., Biesboer D.D. Liss. New York. 1987. P. 367.
- Fraga M.F., Cañal M.J., Aragonés A., Rodríguez R. Factors involved in Pinus radiata D. Don. micrografting // Ann. For. Sci. 2002. V. 59. P. 155. https://doi.org/10.1051/forest:2002002
- Chang I.-F., Chen P.-J., Shen C.-H., Hsieh T.-J., Hsu Y.-W., Huang B.-L., Kuo C.-I., Chen Y.-T., Chu H. A., Yeh K.-W., Huang L.-C. Proteomic profiling of proteins associated with the rejuvenation of Sequoia sempervirens (D. Don) Endl // Proteome Sci. 2010. V. 8. P. 64. https://doi.org/10.1186/1477-5956-8-64
- Ondro W.J., Couto L., Betters D.R. The status and practice of forestry in Brazil in the early 1990s // For. Chronicle. 1995. V. 7. P. 106. https://doi.org/10.5558/tfc71106-1
- Su X.C. Study on the differences of the seedling of different generations from successive tissue culture of Chinese fir clone // J. Fujian College Forestry. 2000. V. 20. P. 353.
- Ashapkin V.V., Kutueva L.I., Vanyushin B.F. Aging epigenetics: accumulation of errors or realization of a specific program? // Biochem. 2015. V. 80. P. 1406. https://doi.org/ 10.1134/S0006297915110024
- Hübl S., Zoglauer K. Entwicklung einer Vermehrungsmethode für züchterisch wertvolle Lärchen. Beitr // Forstwirtschaft. 1991. V. 25. P. 18.
- Kretzschmar U., Ewald D. Vegetative propagation of 140-year-old Larix decidua trees by different in vitro techniques // Plant Physiol. 1994. V. 144. P. 627. https://doi.org/10.1016/s0176-1617(11)82149-8
- Castander-Olarieta A., Moncaleán P., Montalbán I.A. Somatic embryogenesis in Pines // Somatic Embryogenesis. Methods in Molecular Biology. V. 2527/ Eds. Ramírez-Mosqueda M.A. Humana. New York. 2022. P. 41. https://doi.org/10.1007/978-1-0716-2485-2_4
- Klimaszewska K., Rutledge R.G. Is there potential for propagation of adult spruce trees through somatic embryogenesis? // Vegetative propagation of forest trees / Eds. Park Y.S., Bonga J.M., Moon H.K. National Institute of Forest Science (NIFoS). Seoul. Korea. 2016. P. 195.
- Ruaud J.N., Bercetche J., Paques M. First evidence of somatic embryogenesis from needles of 1-year-old Picea abies plants // Plant Cell Rep. 1992. V. 11. P. 563. https://doi.org/ 10.1007/BF00233093
- Harvengt L., Trontin J.F., Reymond I., Canlet F., Pâques M. Molecular evidence of true-to-type propagation of a 3-year-old Norway spruce through somatic embryogenesis // Planta. 2001. V. 213. P. 828. https://doi.org/10.1007/s004250100628
- Varis S., Klimaszewska K., Aronen T. Somatic embryogenesis and plant regeneration from primordial shoot explants of Picea abies (L.) H. Karst. somatic trees // Front. Plant Sci. 2018. V. 9. P. 1551. https://doi.org/ 10.3389/fpls.2018.01551
- Klimaszewska K., Overton C., Stewart D., Rutledge R.G. Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during tissue culture process // Planta. 2011. V. 233. P. 635. https://doi.org/10.1007/s00425-010-1325-4
Дополнительные файлы
