Analysis of the involvement of susceptibility genes to to coronary heart disease in implementation signaling and metabolic pathways
- Autores: Chasovskikh N.Y.1, Shestakova E.E.1
-
Afiliações:
- Siberian State Medical University
- Edição: Volume 60, Nº 4 (2024)
- Páginas: 94-103
- Seção: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://gynecology.orscience.ru/0016-6758/article/view/666953
- DOI: https://doi.org/10.31857/S0016675824040087
- EDN: https://elibrary.ru/crcouh
- ID: 666953
Citar
Resumo
Coronary heart disease (CHD) is a common pathology, and its development is mediated by a large number of genetic factors, environmental factors and their combinations. In this regard, the objective of the study was a bioinformatic analysis of the involvement of susceptibility genes to CHD in the implementation of signaling and metabolic pathways. The list of susceptibility genes was compiled using GWAS, DisGeNET and GeneCards databases. Pathway enrichment analysis was performed using the ClueGO v2.5.9 Cytoscape v3.9.1 plugin. As a result of the study, it was established that these genes are involved in the implementation of various mechanisms of development of CHD, including disorders of lipid metabolism, changes in the activity of elements of the complement system, and endothelial function. Hereditary factors can influence changes in the processes of regulation of thrombus formation, vascular tone, the balance of pro- and antioxidant factors, endothelial permeability, water and sodium adsorption, as well as the processes of angiogenesis. In this case, the genes under study may be involved in the implementation of one or several signaling/metabolic pathways.
Palavras-chave
Texto integral

Sobre autores
N. Chasovskikh
Siberian State Medical University
Autor responsável pela correspondência
Email: evgenika06@gmail.com
Rússia, Tomsk, 634050
E. Shestakova
Siberian State Medical University
Email: evgenika06@gmail.com
Rússia, Tomsk, 634050
Bibliografia
- Khan M.A., Hashim M.J., Mustafa H. et al. Global epidemiology of ischemic heart disease: Results from the global burden of disease study // Cureus. 2020. V. 12. № 7. https://doi.org/10.7759/cureus.9349
- Colditz G.A., Stampfer M.J., Willett W.C. et al. A prospective study of parental history of myocardial infarction and coronary heart disease in women // Am. J. Epidemiol. 1986. V. 123. P. 48–58. https://doi.org/10.1093/oxfordjournals.aje.a114223
- Lewis D., Wang Q., Topol E.J. Ischaemic heart disease // Nat. Encyclopedia Life Sciences. 2002. V. 10. P. 508–515.
- Shen G., Archacki S.R., Wang Q. The molecular genetics of coronary artery disease and myocardial infarction // Acute Coronary Syndrome. 2004. V. 6. P. 129–141. https://doi.org/10.1097/01.hco.0000160373.77190.f1
- Slack J., Evans K.A. The increased risk of death from ischaemic heart disease in first degree relatives of 121 men and 96 women with ischaemic heart disease // J. Med. Genet. 1966. V. 2. P. 239–257. https://doi.org/10.1136/jmg.3.4.239
- Wang Q., Pyeritz R.E. Molecular genetics of cardiovascular disease // Textbook of Cardiovascular Medicine. Edn 1. N. Y. Lippincott Williams & Wilkins, 2000. P. 1–12.
- Wang Q., Chen Q. Cardiovascular disease and congenital defects // Nat. Encyclopedia Life Sciences. 2000. V. 3. P. 646–657.
- Wang Q., Chen Q. Cardiovascular disease and congenital heart defects // Nat. Encyclopedia Human Genome. 2003. V. 1. P. 396–411.
- Wang Q. Molecular genetics of coronary artery disease // Curr. Opin. Cardiol. 2005. V. 20. № 3. P. 182–188. https://doi.org/10.1097/01.hco.0000160373.77190.f1
- MacArthur J., Bowler E., Cerezo M. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog) // Nucl. Ac. Res. 2017. V. 45. P. D896–D901. https://doi.org/10.1093/nar/gkw1133
- Pinero J., Bravo A., Rosinach N.Q. et al. DisGeNET: A comprehensive platform, integrating information on human disease-associated genes and variants // Nuc. Ac. Res. 2017. V. 45. P. D833–D839. https://doi.org/10.1093/nar/gkw943
- Safran M., Dalah I., Alexander J. et al. GeneCards version 3: The human gene integrator // Database (Oxford). 2010. https://doi.org/10.1093/database/baq020
- Bindea G., Mlecnik B., Hackl H. et al. ClueGO: A Cytoscape plug-into decipher functionally grouped gene ontology and pathway annotation networks // Bioinformatics. 2009. V. 25. № 8. P. 1091–1093. https://doi.org/10.1093/bioinformatics/btp101
- Kanehisa M., Goto S., Kawashima S., Nakaya A. The KEGG databases at GenomeNet // Nucl. Ac. Res. 2002. V. 30. № 1. P. 42–46. https://doi.org/10.1093/nar/30.1.42
- Fabregat A., Jupe S., Matthews L. et al. The reactome pathway knowledgebase // Nucl. Ac. Resh. 2018. V. 46. № D1. P. D649–D655. https://doi.org/10.1093/nar/gkx1132
- Tang W., Hu J., Zhang H. et al. Kappa coefficient: A popular measure of rater agreement // Shanghai Archives of Psychiatry. 2015. V. 27. № 1. P. 62–67. https://doi.org/10.11919/j.issn.1002-0829.215010
- Wilson P.W., DʹAgostino R.B., Levy D. et al. Prediction of coronary heart disease using risk factor categories // Circulation. 1998. V. 97. № 18. P. 1837–1847. https://doi.org/10.1161/01.cir.97.18.1837
- Zhang X., Sessa W.C., Fernandez-Hernando C. Endothelial transcytosis of lipoproteins in atherosclerosis // Front. Cardiovasc. Med. 2018. V. 5. https://doi.org/10.3389/fcvm.2018.00130
- Mehta D., Malik A.B. Signaling mechanisms regulating endothelial permeability // Physiol. Rev. 2006. V. 86. P. 279–367. https://doi.org/10.1152/physrev.00012.2005
- Rahimi N. Defenders and challengers of endothelial barrier function // Front. Immunol. 2017. V. 8. https://doi.org/10.3389/fimmu.2017.01847
- Fung K.Y.Y., Fairn G.D., Lee W.L. Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities // Traffic. 2018. V. 19. P. 5–18. https://doi.org/10.1111/tra.12533
- Лапунова Л.Л. Иммунологические изменения при некоторых заболеваниях сердечно-сосудистой системы // Мед, новости. 1996. № 11. С. 3–8.
- van Hinsbergh V.W. Endothelium-role in regulation of coagulation and inflammation // Semin. Immunopathol. 2012. V. 34. № 1. P. 93–106. https://doi.org/10.1007/s00281-011-0285-5
- Rajendran P., Rengarajan T., Thangavel J. et al. The vascular endothelium and human diseases // Int. J. Biol. Sci. 2013. V. 9. P. 1057–1069. https://doi.org/10.7150/ijbs.7502.
- Kirsch J., Schneider H., Pagel J.-I. et al. Endothelial dysfunction, and a prothrombotic, proinflammatory phenotype is caused by loss of mitochondrial thioredoxin reductase in endothelium // Arterioscler. Thromb. Vasc. Biol. 2016. V. 36. P. 1891–1899. https://doi.org/10.1161/ATVBAHA.116.307843
- Lin J., He S., Sun X. et al. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10 // FASEB J. 2016. V. 30. P. 3216–3226. https://doi.org/10.1096/fj.201500163R
- Yau J.W., Singh K.K., Hou Y. et al. Endothelial-specific deletion of autophagy-related 7 (ATG7) attenuates arterial thrombosis in mice // J. Thorac. Cardiovasc. Surg. 2017. V. 154. P. 978–988. https://doi.org/10.1016/j.jtcvs.2017.02.058
- Wu Q., Hu Y., Jiang M. et al. Effect of autophagy regulated by sirt1/foxo1 pathway on the release of factors promoting thrombosis from vascular endothelial cells // Int. J. Mol. Sci. 2019. V. 20. https://doi.org/10.3390/ijms20174132
- Donegan R.K., Moore C.M., Hanna D.A., Reddi A.R. Handling heme: The mechanisms underlying the movement of heme within and between cells // Free Radic. Biol. Med. 2019. V. 133. P. 88–100. https://doi.org/10.1016/j.freeradbiomed.2018.08.005
- Gouveia Z., Carlos A.R., Yuan X. et al. Characterization of plasma labile heme in hemolytic conditions // FEBS J. 2017. V. 284. № 19. P. 3278–3301. https://doi.org/10.1111/febs.14192
- Sandoo A., van Zanten J.J., Metsios G.S. et al. The endothelium and its role in regulating vascular tone // Open Cardiovasc. Med. J. 2010. V. 4. P. 302–312. https://doi.org/10.2174/1874192401004010302
- Heathcote H.R., Lee M.D., Zhang X. et al. Endothelial TRPV4 channels modulate vascular tone by Ca2+ -induced Ca2+ release at inositol 1,4,5-trisphosphate receptors // Br. J. Pharmacol. 2019. V. 176. P. 3297–3317. https://doi.org/10.1111/bph.14762
- Gao W., Liu H., Yuan J. et al. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway // J. Cell. Mol. Med. 2016. V. 20. P. 2318–2327. https://doi.org/10.1111/jcmm.12923
- Herrero-Fernandez B., Gomez-Bris R., Somovilla-Crespo B., Gonzalez-Granado J.M. Immunobiology of atherosclerosis: A complex net of interactions // Int. J. Mol. Sci. 2019. V. 20. https://doi.org/10.3390/ijms20215293
- Marchio P., Guerra-Ojeda S., Vila J.M. et al. Targeting early atherosclerosis: A focus on oxidative stress and inflammation // Oxid. Med. Cell Longev. 2019. V. 2019. https://doi.org/10.1155/2019/8563845
- Nafisa A., Gray S.G., Cao Y. et al. Endothelial function and dysfunction: Impact of metformin // Pharmacol. Ther. 2018. V. 192. P. 150–162. https://doi.org/10.1016/j.pharmthera.2018.07.007
- Silva I.V.G., de Figueiredo R.C., Rios D.R.A. Effect of different classes of antihypertensive drugs on endothelial function and inflammation // Int. J. Mol. Sci. 2019. V. 20. https://doi.org/10.3390/ijms20143458
- Incalza M.A., DʹOria R., Natalicchio A. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases // Vascul. Pharmacol. 2018. V. 100. P. 1–19. https://doi.org/10.1016/j.vph.2017.05.005
- Guagliardo N.A., Yao J., Hu C., Barrett P.Q. Mini review: Aldosterone biosynthesis: Electrically gated for our protection // Endocrinology. 2012. V. 153. № 8. P. 3579–3586. https://doi.org/10.1210/en.2012-1339
- Palatini P., Ceolotto G., Ragazzo F. et al. CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension // J. Hypertens. 2009. V. 27. № 8. P. 1594–1601. https://doi.org/10.1097/HJH.0b013e32832ba850
- Li L., He M., Zhou L. et al. A solute carrier family 22 member 3 variant rs3088442 G→A associated with coronary heart disease inhibits lipopolysaccharide-induced inflammatory response // J. Biol. Chem. 2015. V. 290. № 9. P. 5328–5340. https://doi.org/10.1074/jbc.M114.584953
- Abrahao K.P., Salinas A.G., Lovinger D.M. Alcohol and the brain: Neuronal molecular targets, synapses, and circuits // Neuron. 2017. V. 96. № 6. P. 1223–1238. https://doi.org/10.1016/j.neuron.2017.10.032
- Pries A.R., Secomb T.W., Gaehtgens P. The endothelial surface layer // Pflug. Arch. 2000. V. 440. P. 653–666. https://doi.org/10.1007/s004240000307
- Buonassisi V. Sulfated mucopolysaccharide synthesis and secretion in endothelial cell cultures // Exp. Cell Res. 1973. V. 76. P. 363–368. https://doi.org/10.1016/0014-4827(73)90388-1
- Gerrity R.G., Richardson M., Somer J.B. et al. Endothelial cell morphology in areas of in vivo Evans blue uptake in the aorta of young pigs. II. Ultrastructure of the intima in areas of differing permeability to proteins // Am. J. Pathol. 1977. V. 89. P. 313–334.
- Baldwin A.L., Winlove C.P. Effects of perfusate composition on binding of ruthenium red and gold colloid to glycocalyx of rabbit aortic endothelium // J. Histochem. Cytochem. 1984. V. 32. P. 259–266. https://doi.org/10.1177/32.3.6198357
- Schnittler H.J. Structural and functional aspects of intercellula r junctions in vascular endothelium // Basic Res. Cardiol. 1998. V. 93. № 3. P. 30–39. https://doi.org/10.1007/s003950050205
- Lampugnani M.G. Endothelial cell-to-cell junctions: adhesion and signaling in physiology and pathology // Cold Spring Harb. Perspect. Med. 2012. V. 2. https://doi.org/10.1101/cshperspect.a006528
- Simionescu M., Simionescu N., Palade G.E. Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature // J. Cell Biol. 1975. V. 67. P. 863–885. https://doi.org/10.1083/jcb.67.3.863
- Dejana E., Corada M., Lampugnani M.G. Endothelial cell-to-cell junctions // FASEB J. 1995. V. 9. P. 910–918. https://doi.org/10.1096/fasebj.9.10.7615160
- Simionescu M., Antohe F. Functional ultrastructure of the vascular endothelium: changes in various pathologies // The Vascular Endothelium I. Berlin; Heidelberg: Springer. 2006. P. 41–69. https://doi.org/10.1007/3-540-32967-6_2
- Boettner B., Van Aelst L. Control of cell adhesion dynamics by Rap1 signaling // Curr. Opin. Cell Biol. 2009. V. 21. P. 684–693. https://doi.org/10.1016/j.ceb.2009.06.004
- Shah N., Meira L.B., Elliott R.M. et al. DNA damage and repair in patients with coronary artery disease: Correlation with plaque morphology using optical coherence tomography (decode study) // Cardiovasc. Revasc. Med. 2019. V. 20. № 9. P. 812–818. https://doi.org/10.1016/j.carrev.2019.04.028
- Melincovici C.S., Boşca A.B., Şuşman S. et al. Vascular endothelial growth factor (VEGF) – key factor in normal and pathological angiogenesis // Rom. J. Morphol. Embryol. 2018. V. 59. № 2. P. 455–467.
- Adams J.C., Tucker R.P. The thrombospondin type 1 repeat (TSR) superfamily: Diverse proteins with related roles in neuronal development // Dev. Dyn. 2000. V. 218. № 2. P. 280–299. https://doi.org/10.1002/(SICI)1097-0177(200006) 218:2<280::AID-DVDY4>3.0.CO;2-0
Arquivos suplementares
