Proteomic Analysis of the Levilactobacillus brevis 47f Strain under Oxidative Stress
- Авторлар: Poluektova E.U.1, Mavletova D.A.1, Ziganshin R.H.2, Danilenko V.N.1
-
Мекемелер:
- Vavilov Institute of General Genetics of the Russian Academy of Sciences
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
- Шығарылым: Том 61, № 3 (2025)
- Беттер: 21-31
- Бөлім: ГЕНЕТИКА МИКРООРГАНИЗМОВ
- URL: https://gynecology.orscience.ru/0016-6758/article/view/679418
- DOI: https://doi.org/10.31857/S0016675825030038
- EDN: https://elibrary.ru/ULRRRN
- ID: 679418
Дәйексөз келтіру
Аннотация
Oxidative stress in a cell is an imbalance between reactive oxygen species (ROS) and the ability to inactivate oxidants and restore damaged molecules. Oxidative stress is involved in the pathogenesis of many human diseases. Lactobacilli, being permanent components of the human intestinal microbiota, are able to reduce the manifestations of oxidative stress in a macroorganism and are used as pharmabiotics in the treatment of diseases caused by it. The strain Levilactobacillus brevis 47f was isolated from the human intestine, studied in vitro and in vivo and is a potential probiotic with antioxidant action. The mechanisms determining the response of the strain to oxidative stress remain poorly understood. The objective of this work was to investigate the reaction of the L. brevis 47f strain to oxidative stress caused by hydrogen peroxide and oxygen using quantitative proteomic analysis. When exposed to both oxidants, the viability of the strain cells remained virtually unchanged, but both oxidants caused significant, but different, changes in the expression of proteins. Oxygen had a stronger effect on the strain than hydrogen peroxide. Under the action of peroxide, stress response proteins were mainly activated, while under the action of oxygen, significant changes in metabolism occurred.
Негізгі сөздер
Толық мәтін

Авторлар туралы
E. Poluektova
Vavilov Institute of General Genetics of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: epolu@vigg.ru
Ресей, Moscow, 119991
D. Mavletova
Vavilov Institute of General Genetics of the Russian Academy of Sciences
Email: epolu@vigg.ru
Ресей, Moscow, 119991
R. Ziganshin
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Email: epolu@vigg.ru
Ресей, Moscow, 117997
V. Danilenko
Vavilov Institute of General Genetics of the Russian Academy of Sciences
Email: epolu@vigg.ru
Ресей, Moscow, 119991
Әдебиет тізімі
- Sies H. Oxidative stress: Concept and some practical aspects // Antioxidants (Basel). 2020. V. 9. № 9. https://doi.org/10.3390/antiox9090852
- Sun Y., Wang X., Li L. et al. The role of gut microbiota in intestinal disease: from an oxidative stress perspective // Front. Microbiol. 2024. V. 15. https://doi.org/10.3389/fmicb.2024.1328324
- Averina O.V., Poluektova E.U., Marsova M.V., Danilenko V.N. Biomarkers and utility of the antioxidant potential of probiotic lactobacilli and bifidobacteria as representatives of the human gut microbiota // Biomedicines. 2021. V. 9. № 10. https://doi.org/10.3390/biomedicines9101340
- Feng T., Wang J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review // Gut Microbes. 2020. V. 12. № 1. https://doi.org/10.1080/19490976.2020. 1801944
- Kong Y., Olejar K.J., On S.L.W., Chelikani V. The potential of Lactobacillus spp. for modulating oxidative stress in the gastrointestinal tract // Antioxidants (Basel). 2020. V. 9. № 7. https://doi.org/10.3390/antiox9070610
- Zhao T., Wang H., Liu Z. et al. Recent perspective of Lactobacillus in reducing oxidative stress to prevent disease // Antioxidants (Basel). 2023. V. 12. № 3. https://doi.org/10.3390/antiox12030769
- Feyereisen M., Mahony J., Kelleher P. et al. Comparative genome analysis of the Lactobacillus brevis species // BMC Genomics. 2019. V. 20. № 1. Article 416. https://doi.org/10.1186/s12864-019-5783-1
- Kim K., Yang S., Paik H. Probiotic properties of novel probiotic Levilactobacillus brevis KU15147 isolated from radish kimchi and its antioxidant and immunoenhancing activities // Food Sci. Biotechnol. 2021. V. 30. P. 257–265. https://doi.org/10.1007/s10068-020-00853-0
- Stankovic M., Veljovic K., Popovic N. et al. Lactobacillus brevis BGZLS10-17 and Lb. plantarum BGPKM22 exhibit anti-inflammatory effect by attenuation of NF-κB and MAPK signaling in human bronchial epithelial cells // Int. J. Mol. Sci. 2022. V. 23. № 10. https://doi.org/10.3390/ijms23105547
- Kumar S., Praneet N.S., Suchiang K. Lactobacillus brevis MTCC 1750 enhances oxidative stress resistance and lifespan extension with improved physiological and functional capacity in Caenorhabditis elegans via the DAF-16 pathway // Free Radic. Res. 2022. V. 56. № 7–8. P. 555–571. https://doi.org/10.1080/10715762.2022.2155518
- Jiang X., Gu S., Liu D. et al. Lactobacillus brevis 23017 relieves mercury toxicity in the colon by modulation of oxidative stress and inflammation through the interplay of MAPK and NF-κB signaling cascades // Front. Microbiol. 2018. V. 9. https://doi.org/10.3389/fmicb.2018.02425
- Yunes R., Poluektova E., Dyachkova M. et al. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota // Anaerobe. 2016. V. 42. P. 197–204. https://doi.org/10.1016/j.anaerobe.2016.10.011
- Marsova M., Abilev S., Poluektova E., Danilenko V. A bioluminescent test system reveals valuable antioxidant properties of Lactobacillus strains from human microbiota // World J. Microbiol. Biotechnol. 2018. V. 34. № 2. Article 27. https://doi.org/10.1007/s11274-018-2410-2
- Marsova M., Odorskaya M., Novichkova M. et al. The Lactobacillus brevis 47f strain protects the murine intestine from enteropathy induced by 5-fluorouracil // Microorganisms. 2020. V. 8. № 6. https://doi.org/10.3390/microorganisms8060876
- Olekhnovich E., Batotsyrenova E., Yunes R. et al. The effects of Levilactobacillus brevis on the physiological parameters and gut microbiota composition of rats subjected to desynchronosis // Microbial. Cell Factories. 2021. V. 20. Article 226. https://doi.org/10.1186/s12934-021-01716-x
- Kochetkov N., Smorodinskaya S., Vatlin A. et al. Ability of Lactobacillus brevis 47f to alleviate the toxic effects of imidacloprid low concentration on the histological parameters and cytokine profile of Zebrafish (Danio rerio) // Int. J. Mol. Sci. 2023. V. 24. № 15. https://doi.org/10.3390/ijms241512290
- Полуэктова Е.У., Аверина О.В., Ковтун А.С., Даниленко В.Н. Транскриптомный анализ штамма Levilactobacillus brevis 47f в условиях окислительного стресса // Генетика. 2023. Т. 59. № 8. С. 888–897. https://doi.org/10.31857/S0016675823080106
- DeMan J., Rogosa M., Sharpe M. A medium for the cultivation of lactobacilli // J. Appl. Microbiol. 1960. V. 23. № 1. P. 130–135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
- Rappsilber J., Mann M., Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips // Nat. Protoc. 2007. V. 2. № 8. P. 1896–1906. https://doi.org/10.1038/nprot.2007.261
- Ma B., Zhang K., Hendrie C. et al. PEAKS: Powerful software for peptide de novo sequencing by tandem mass spectrometry // Rapid. Commun. Mass Spectrom. 2003. V. 17. № 20. P. 2337–2342. https://doi.org/10.1002/rcm.1196
- Yang M., Wenner N., Dykes G.F. et al. Biogenesis of a bacterial metabolosome for propanediol utilization // Nat. Commun. 2022. V. 13. № 1. Article 2920. https://doi.org/10.1038/s41467-022-30608-w
- Mota M.J., Lopes R.P., Sousa S. et al. Lactobacillus reuteri growth and fermentation under high pressure towards the production of 1,3-propanediol // Food Res. Int. 2018. V. 113. P. 424–432. https://doi.org/10.1016/j.foodres.2018.07.034
- Champomier-Vergès M.C., Zuñiga M., Morel-Deville F. et al. Relationship between arginine degardation, pH and survival in Lactobacillus sakei // FEMS Microbiol. Lett. 1999. V. 180. P. 297–304. https://doi.org/10.1111/j.1574-6968.1999.tb08809.x
- Basu Thakur P., Long A.R., Nelson B.J. et al. Complex responses to hydrogen peroxide and hypochlorous acid by the probiotic bacterium Lactobacillus reuteri // mSystems. 2019. V. 4. № 5. https://doi.org/10.1128/mSystems.00453-19
- Zhai Z., Yang Y., Wang H. et al. Global transcriptomic analysis of Lactobacillus plantarum CAUH2 in response to hydrogen peroxide stress // Food Microbiol. 2020. V. 87. https://doi.org/10.1016/j.fm.2019.103389
- Полуэктова Е.У., Мавлетова Д.А., Одорская М.В. и др. Сравнительный геномный, транскриптомный и протеомный анализ штамма Limosi-lactobacillus fermentum U-21, перспективного для создания фармабиотика // Генетика. 2022. Т. 58. № 9. С. 1029–1041. https://doi.org/10.31857/S0016675822090120
- Averill-Bates D.A. The antioxidant glutathione // Vitam. Horm. 2023. V. 121. P. 109–141. https://doi.org/10.1016/bs.vh.2022.09.002.
- Lin X., Xia Y., Yang Y. et al. Probiotic characteristics of Lactobacillus plantarum AR113 and its molecular mechanism of antioxidant // LWT. 2020. V. 126. https://doi.org/ 10.1016/j.lwt.2020.109278
- Weissbach H., Etienne F., Hoshi T. et al. Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function // Arch. Biochem. Biophys. 2002. V. 397. № 2. P. 172–178. https://doi.org/10.1006/abbi.2001.2664.
- Zhang C., Gui Y., Chen X. et al. Transcriptional homogenization of Lactobacillus rhamnosus hsryfm 1301 under heat stress and oxidative stress // Appl. Microbiol. Biotechnol. 2020. V. 104. № 6. P. 2611–2621. https://doi.org/10.1007/s00253-020-10407-3
- Rojas-Tapias D.F., Helmann J.D. Roles and regulation of Spx family transcription factors in Bacillus subtilis and related species // Adv. Microb. Physiol. 2019. V. 75. P. 279–323. https://doi.org/10.1016/bs.ampbs.2019.05.003
- Teixeira J.S., Seeras A., Sanchez-Maldonado A.F. et al. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri // Food Microbiol. 2014. V. 42. P. 172–180. https://doi.org/10.1016/j.fm.2014.03.015
- Zotta T., Parente E., Ricciardi A. Aerobic metabolism in the genus Lactobacillus: Impact on stress response and potential applications in the food industry // J. Appl. Microbiol. 2017. V. 122. № 4. P. 857–869. https://doi.org/10.1111/jam.13399
- Kang T., Korbe D.R., Tanaka T. Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1 // AMB Expr. 2013. V. 3. № 1. https://doi.org/10.1186/2191-0855-3-10
- Stevens M.J.A., Wiersma A., de Vos W.M. et al. Improvement of Lactobacillus plantarum aerobic growth as directed by comprehensive transcriptome analysis // Appl. Environ. Microbiol. 2008. V. 74. № 15. P. 4776–4778. https://doi.org/10.1128/AEM.00136-08
- Lu J., Holmgren A. The thioredoxin antioxidant sys-tem // Free Radic. Biol. Med. 2014. V. 66. P. 75–87. https://doi.org/ 10.1016/j.freeradbiomed.2013.07.036
- Siciliano R.A., Pannella G., Lippolis R. et al. Impact of aerobic and respirative life-style on Lactobacillus casei N87 proteome // Int. J. Food Microbiol. 2019. V. 298. P. 51–62. https://doi.org/10.1016/j.ijfoodmicro.2019.03.006
- Dinarieva T.Y., Klimko A.I., Kahnt J. et al. Adaptation of Lacticaseibacillus rhamnosus CM MSU 529 to aerobic growth: a proteomic approach // Microorganisms. 2023. V. 11. № 2. https://doi.org/10.3390/microorganisms11020313
- Averina O.V., Kovtun A.S., Mavletova D.A. et al. Oxidative stress response of probiotic strain Bifidobacterium longum subsp. longum GT15 // Foods. 2023. V. 12. № 18. https://doi.org/10.3390/foods12183356
- Gao Y., Liu Y., Ma F. et al. Global transcriptomic and proteomics analysis of Lactobacillus plantarum Y44 response to 2,2-azobis(2-methylpropionamidine) dihydrochloride (AAPH) stress // J. Proteomics. 2020. V. 226. https://doi.org/10.1016/j.jprot.2020.103903
- Xu H., Wu L., Pan D. et al. Adhesion characteristics and dual transcriptomic and proteomic analysis of Lactobacillus reuteri SH23 upon gastrointestinal fluid stress // J. Proteome Res. 2021. V. 20. № 5. P. 2447–2457. https://doi.org/10.1021/acs.jproteome.0c00933
- Аверина О.В., Ковтун А.С., Мавлетова Д.А. и др. Реакция штамма Bifidobacterium longum subsp. infantis ATCC 15697 на окислительный стресс // Генетика. 2023. Т. 59. № 8. С. 898–913. https://doi.org/10.31857/S0016675823080039
Қосымша файлдар
