Nuclear- and Mitochondrial Marker-Based Research of Russia's Ural and Central Regions Goat Population Structure

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The study of animal biodiversity is an important task of fundamental biology. Population genetic studies of domesticated species provide information on the history of the species and the current status of genetic resources. The goat is one of the first domesticated animal species widely used in agriculture and is also of interest as a subject of population studies. The species is characterized by a wide biodiversity, represented by native and transboundary breeds. In our country, the majority of goats are kept on small private farms, where the animals have not been subjected to the rigorous process of artificial selection and are in fact a unique object for research. Local populations carry a genetic resource of traditional systems of nature management, and their gene pool may contain genetic traces of the disappeared breeds of folk selection. This is also of particular interest due to the presence on the territory of the country of unexplored ancient migration routes and proximity to the centers of domestication. Unlike pedigree-down goats, whose populations are located near the southern and south-eastern borders of the country, the genetic diversity of animals from the main, central part of the country has not been characterized before. At the research station of IOGEN RAS "Shakhovskaya"a population was formed on the basis of animals kept in the traditional way on private farms in rural areas on the border of Moscow, Tver, and Smolensk. In this article, population genetic analysis of this population and populations from two mining and factory districts of the Urals is carried out, as well as their comparison with existing factory breeds of different productivity direction.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Soloshenkova

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: nickolaevaelina@gmail.com
Ресей, Moscow, 119991

A. Piskunov

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: nickolaevaelina@gmail.com
Ресей, Moscow, 119991

V. Voronkova

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: nickolaevaelina@gmail.com
Ресей, Moscow, 119991

E. Konorov

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: nickolaevaelina@gmail.com
Ресей, Moscow, 119991

Yu. Stolpovsky

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: nickolaevaelina@gmail.com
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Афанасьева А.И. Гормональные механизмы сезонных адаптивных изменений у коз горноалтайской пуховой породы // Сибирский вестник сельскохозяйственной науки. 2005. № 4. С. 121–125.
  2. Zobel G., Neave H.W., Webster J. Understanding natural behavior to improve dairy goat (Capra hircus) management systems // Translational animal science. – 2019. V. 3. № 1. С. 212–224.
  3. Феофилов А.В., Юлдашбаев Ю.А., Глазко В.И. Доместикации сельскохозяйственных животных // Новости науки Казахстана. 2014. № 1. С. 84–99.
  4. Глазко В.И., Косовский Г.Ю., Глазко Т.Т. Доместикация как генетический феномен // Кролиководство и звероводство. 2018. № 1. С. 5–8.
  5. Dubeuf J.P., Morales F.A.R., Guerrero Y.M. Evolution of goat production systems in the Mediterranean basin: Between ecological intensification and ecologically intensive production systems // Small Ruminant Research. 2018. V. 163. P. 2–9.
  6. Liu M., Zhou Y., Rosen B.D. et al. Diversity of copy number variation in the worldwide goat population // Heredity. 2019. P. 636–646. https://doi.org/10.1038/s41437-018-0150-6
  7. Colli L., Milanesi M., Talenti A. et al. Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes // Genet SelEvol. 2018. P. 1–20. https://doi.org/10.1186/s12711-018-0422-x
  8. Бекетов С.В., Пискунов А.К., Воронкова В.Н. и др. Генетическое разнообразие и филогения пуховых коз Центральной и Средней Азии // Генетика. 2021. Т. 57. № 7. С. 810–819.
  9. Шаталов В.А. Этапы развития молочного козоводства в России // Овцы, козы, шерстяное дело. 2012. № 4. С. 17–20.
  10. Чикалев А.И. Козоводство: учебник: для вузов по направлению подготовки 111100 “Зоотехния” (бакалавриат). ГЭОТАР-Медиа. 2012.
  11. Воронкова В.Н., Пискунов А.К., Николаева Э.А. и др. Гаплотипическое разнообразие монгольских и тувинских пород коз (Caprahircus) на основе полиморфизма мтДНК и Y-хромосомы // Генетика. 2021. Т. 57. № 10. С. 1164–1173. https://doi.org/10.31857/S0016675821100155.
  12. Adamack A.T., Gruber B. PopGenReport: Simplifying basic population genetic analyses in R // Methods in Ecology and Evolution. 2014. V. 5. № 4. P. 384–387.
  13. Jombart T. Adegenet: An R package for the multivariate analysis of genetic markers // Bioinformatics. 2008. V. 24. № 11. P. 1403–1405.
  14. Peakall R.O.D., Smouse P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research // Mol. Ecol. Notes. 2006. V. 6. № 1. P. 288–295.
  15. Luikart G., Gielly L., Excoffier L. et al. Multiple maternal origins and weak phylogeographic structure in domestic goats // Proc. Natl Acad. Sci. USA. 2001. V. 98. № 10. P. 5927–5932. https://doi.org/10.1073/pnas.091591198
  16. Waki A., Sasazaki S., Kobayashi E., Mannen H. Paternal phylogeography and genetic diversity of East Asian goats // Anim. Genet. 2015. V. 46. № 3. P. 337–339. https://doi.org/10.1111/age.12293
  17. Vidal O., Drögemüller C., Obexer-Ruff G. et al. Differential distribution of Y-chromosome haplotypes in Swiss and Southern European goat breeds // Sci. Rep. 2017. V. 7. № 1. P. 16161. https://doi.org/10.1038/s41598-017-15593-1
  18. Tabata R., Kawaguchi F., Sasazaki S. et al. The Eurasian Steppe is an important goat propagation route: A phylogeographic analysis using mitochondrial DNA and Y-chromosome sequences of Kazakhstani goats // Anim. Sci. J. 2018. V. 90. P. 317–322. https://doi.org/10.1111/asj.13144
  19. Chen C., Lu B., Huang X. et al. sangeranalyseR: simple and interactive analysis of Sanger sequencing data in R // bioRxiv. 2020.
  20. Okonechnikov K., Golosova O., Fursovet M. et al. Unipro UGENE: A unified bioinformatics toolkit // Bioinformatics. 2012. V. 28. № 8. P. 1166–1167.
  21. Kumar S., Tamura K., Nei M. MEGA: molecular evolutionary genetics analysis software for microcomputers // Bioinformatics. 1994. V. 10. № 2. P. 189–191.
  22. Excoffier L., Laval G., Schneider S. Arlequin (version 3.0): An integrated software package for population genetics data analysis // Evol. Bioinformatics. 2005. V. 21. P. 117693430500100003.
  23. Rozas J., Ferrer-Mata A., Sánchez-DelBarrio K. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets // Mol. Biol. Evol. 2017. V. 34. № 12. P. 3299–3302.
  24. Huelsenbeck J.P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees // Bioinformatics. 2001. V. 17. № 8. P. 754–755.
  25. Lanfear R., Frandsen P.B., Wright A.M et al. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses // Mol. Biol. Evol. 2017. V. 34. № 3. P. 772–773.
  26. Leigh J.W., Bryant D. POPART: Full-feature software for haplotype network construction // Methods Ecol. Evol. 2015. V. 6. № 9. P. 1110–1116.
  27. Kamvar Z.N., Tabima J.F., Grünwald N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction // Peer J. 2014. V. 2. P. e281.
  28. Cassidy L.M., Teasdale M.D., Carolan S. et al. Capturing goats: Documenting two hundred years of mitochondrial DNA diversity among goat populations from Britain and Ireland // Biol. Letters. 2017. V. 13. № 3. P. 20160876.
  29. Al-Araimi N.A., Al-Atiyat R.M., Gaafar O.M. et al. Maternal genetic diversity and phylogeography of native Arabian goats // Livestock Sci. 2017. V. 206. P. 88–94.
  30. Ruo-Yu L.I.U., Gong-She Y., Chu-Zhao L.E.I. The genetic diversity of mtDNA D-loop and the origin of Chinese goats // Acta Genetica Sinica. 2006. V. 33. № 5. P. 420–428.
  31. Bandelt H.J., Forster P., Röhl A. Median-joining networks for inferring intraspecific phylogenies // Mol. Biol. Evol. 1999. V. 16. № 1. P. 37–48.
  32. Mukhina V., Svishcheva G., Voronkova V.N. et al. Genetic diversity, population structure and phylogeny of indigenous goats of mongolia revealed by SNP genotyping // Animals. 2022. V. 12. P. 221.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Heat map of the MAF065 locus, the colour from yellow to red shows the allele frequency. The abscissa axis shows population names, the ordinate axis shows allele names.

Жүктеу (292KB)
3. Fig. 2. UPGMA dendrogram for the studied populations of goats of Mongolian origin, Russian breeder goats and local mestizised populations based on microsatellite loci. Numbers indicate bootstrap values.

Жүктеу (119KB)
4. Fig. 3. Goat populations in the space of two principal components based on polymorphism of microsatellite loci.

Жүктеу (255KB)
5. Fig. 4. SRY haplotype network among goat populations.

Жүктеу (221KB)
6. Fig. 5. PCA-plot based on the SRY plot in the space of two principal components.

Жүктеу (72KB)
7. Fig. 6. NJ-dendrogram with bootstrap-supported branches based on Nei's genetic distances between goat populations based on the SRY marker.

Жүктеу (90KB)
8. Fig. 7. NJ dendrogram with bootstrap-supported branches based on Nei's genetic distances between goat populations based on mitochondrial DNA D-loop sequence data.

Жүктеу (172KB)

© Russian Academy of Sciences, 2025