Some features of interacting solar wind disturbances
- Авторлар: Shlyk N.S.1, Belov A.V.1, Abunina M.A.1, Belov S.M.1, Abunin A.A.1, Oleneva V.A.1, Yanke V.G.1
-
Мекемелер:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
- Шығарылым: Том 64, № 4 (2024)
- Беттер: 465-478
- Бөлім: Articles
- URL: https://gynecology.orscience.ru/0016-7940/article/view/650917
- DOI: https://doi.org/10.31857/S0016794024040027
- EDN: https://elibrary.ru/RTUWUR
- ID: 650917
Дәйексөз келтіру
Аннотация
Using the updated Forbush Effects and Interplanetary Disturbances Database (https://tools.izmiran.ru/feid), an extensive analysis of the various characteristics of events caused by the influence of interacting solar wind disturbances on near-Earth space was carried out. In particular, the cases of different combinations of pair interaction of high-speed streams from coronal holes and coronal mass ejections over a long period from 1995 to 2022 are considered. Variations in the flux of galactic cosmic rays (with a rigidity of 10 GV), changes in the parameters of the interplanetary medium and geomagnetic activity are described. It is shown that the degree of mutual influence depends on the time between the registration of neighboring events, while the most pronounced changes in various parameters exist for events in which interaction occurred before reaching the Earth’s orbit. It has also been established that in interacting solar wind disturbances, not only the extrema of the parameters of cosmic rays, interplanetary medium and geomagnetic activity are subject to changes, but also their time profile.
Авторлар туралы
N. Shlyk
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: nshlyk@izmiran.ru
Ресей, Moscow, Troitsk
A. Belov
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
Email: nshlyk@izmiran.ru
Ресей, Moscow, Troitsk
M. Abunina
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
Email: nshlyk@izmiran.ru
Ресей, Moscow, Troitsk
S. Belov
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
Email: nshlyk@izmiran.ru
Ресей, Moscow, Troitsk
A. Abunin
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
Email: nshlyk@izmiran.ru
Ресей, Moscow, Troitsk
V. Oleneva
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
Email: nshlyk@izmiran.ru
Ресей, Moscow, Troitsk
V. Yanke
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
Email: nshlyk@izmiran.ru
Ресей, Moscow, Troitsk
Әдебиет тізімі
- Белов А.В., Ерошенко Е.А., Янке Г.В., Оленева В.А., Абунина М.А., Абунин А.А. Метод глобальной съемки для мировой сети нейтронных мониторов // Геомагнетизм и аэрономия. Т. 58. № 3. С. 374–389. 2018. https://doi.org/10.7868/S0016794018030082
- Шлык Н.С., Белов А.В., Абунина М.А., Ерошенко Е.А., Абунин А.А., Оленева В.А., Янке В.Г. Влияние взаимодействующих возмущений солнечного ветра на вариации галактических космических лучей // Геомагнетизм и аэрономия. Т. 61. № 6. С. 694–703. 2021. https://doi.org/10.31857/S0016794021060134
- Behannon K.W., Burlaga L.F., Hewish A. Structure and evolution of compound streams at ≤1 AU // J. Geophys. Res. V. 96. P. 21213–21225. 1991. https://doi.org/10.1029/91JA02267
- Belov A.V., Eroshenko E.A., Oleneva V.A., Struminsky A.B., Yanke V.G. What determines the magnitude of Forbush decreases? // Adv. Space Res. V. 27. № 3. P. 625–630. 2001. https://doi.org/10.1016/S0273-1177(01)00095-3
- Burlaga L.F., Behannon K.W., Klein L.W. Compound streams, magnetic clouds, and major geomagnetic storms // J. Geophys. Res. V. 92. № A6. P. 5725–5734. 1987. https://doi.org/10.1029/JA092iA06p05725
- Burlaga L.F., Plunkett S.P., St. Cyr O.C. Successive CMEs and complex ejecta // J. Geophys. Res. V. 107. № A10. ID 1266. 2002. https://doi.org/10.1029/2001JA000255
- Burlaga L., Berdichevsky D., Gopalswamy N., Lepping R., Zurbuchen T. Merged interaction regions at 1 AU // J. Geophys. Res. V. 108. № A12. ID 1425. 2003. https://doi.org/10.1029/2003JA010088
- Chen C., Wang Y., Shen C., Ye P., Zhang J., Wang S. Statistical study of coronal mass ejection source locations: 2. Role of active regions in CME production // J. Geophys. Res. – Space. V. 116. № A12. ID A12108. 2011. https://doi.org/10.1029/2011JA016844
- Dasso S., Mandrini C.H., Schmieder B., et al. Linking two consecutive nonmerging magnetic clouds with their solar sources: tracking two consecutive magnetic clouds // J. Geophys. Res. – Space. V. 114. № A2. ID A02109. 2009. https://doi.org/10.1029/2008JA013102
- Farrugia C.J., Berdichevsky D.B. Evolutionary signatures in complex ejecta and their driven shocks // Ann. Geophysicae. V. 22. № 10. P. 3679–3698. 2004. https://doi.org/10.5194/angeo-22-3679-2004
- Gopalswamy N., Yashiro S., Kaiser M.L., Howard R.A., Bougeret J.L. Radio Signatures of Coronal Mass Ejection Interaction: Coronal Mass Ejection Cannibalism? // Astrophys. J. V. 548. P. L91–L94. 2001. https://doi.org/10.1086/318939
- Gopalswamy N., Yashiro S., Michałek G., Kaiser M.L., Howard R.A., Reames D.V., Leske R., von Rosenvinge T. Interacting Coronal Mass Ejections and Solar Energetic Particles // Astrophys. J. V. 572. № 1. P. L103–L107. 2002. https://doi.org/10.1086/341601
- Gopalswamy N., Mäkelä P., Xie H., Akiyama S., Yashiro S. CME interactions with coronal holes and their interplanetary consequences // J. Geophys. Res. V. 114. P. A00–A22. 2009. https://doi.org/10.1029/2008JA013686
- Hajra R., Sunny J.V., Babu M., Nair A.G. Interplanetary sheaths and corotating interaction regions: A comparative statistical study on their characteristics and geoeffectiveness // Solar Phys. V. 297. ID 97. 2022. https://doi.org/10.1007/s11207-022-02020-6
- Heinemann S.G., Temmer M., Farrugia C.J. et al. CME–HSS Interaction and Characteristics Tracked from Sun to Earth // Solar Phys. V. 294. ID 121. 2019. https://doi.org/10.1007/s11207-019-1515-6
- Ivanov K.G. A study of some interplanetary shock wave tendencies // Space Sci. Rev. V. 32. P. 49–63. 1982. https://doi.org/10.1007/BF00225176
- Kahler S.W., Vourlidas A. Fast coronal mass ejection environments and the production of solar energetic particle events // J. Geophys. Res. – Space. V. 110. № A12. ID A12S01. 2005. https://doi.org/10.1029/2005JA011073
- Liu M., Liu Y.D., Yang Z., Wilson III L.B., Hu H. Kinetic properties of an interplanetary shock propagating inside a coronal mass ejection // Astrophys. J. V. 859. № 1. ID L4. 2018. https://doi.org/10.3847/2041-8213/aac269
- Liu Y., Shen F., Yang Y. Numerical Simulation on the propagation and deflection of fast coronal mass ejections (CMEs) Interacting with a corotating interaction region in interplanetary space // Astrophys. J. V. 887. № 2. ID 150. 2019. https://doi.org/10.3847/1538-4357/ab543e
- Lugaz N., Manchester IV W.B., Gombosi T.I. Numerical simulation of the interaction of two coronal mass ejections from Sun to Earth // Astrophys. J. V. 634. № 1. P. 651–662. 2005. https://doi.org/10.1086/491782
- Lugaz N., Farrugia C.J., Davies J.A., Möstl C., Davis C.J., Roussev I.I., Temmer M. The deflection of the two interacting coronal mass ejections of 2010 May 23–24 as revealed by combined in situ measurements and heliospheric imaging // Astrophys. J. V. 759. № 1. ID 68. 2012. https://doi.org/10.1088/0004-637X/759/1/68
- Lugaz N., Farrugia C.J., Manchester IV W.B., Schwadron N. The interaction of two coronal mass ejections: influence of relative orientation // Astrophys. J. V. 778. № 1. ID 20. 2013. https://doi.org/10.1088/0004-637X/778/1/20
- Lugaz N., Farrugia C.J., Huang C.-L., Spence H.E. Extreme geomagnetic disturbances due to shocks within CMEs: geomagnetic effects of shocks inside CME // Geophys. Res. Lett. V. 42. № 12. P. 4694–4701. 2015a. https://doi.org/10.1002/2015GL064530
- Lugaz N., Farrugia C.J., Smith C.W., Paulson K. Shocks inside CMEs: a survey of properties from 1997 to 2006 // J. Geophys. Res. – Space. V. 120. № 4. P. 2409–2427. 2015b. https://doi.org/10.1002/2014JA020848
- Lugaz N., Temmer M., Wang Y., Farrugia C.J. The Interaction of Successive Coronal Mass Ejections: A Review // Solar Phys. V. 292. ID 64. 2017. https://doi.org/10.1007/s11207-017-1091-6
- Mäkelä P., Gopalswamy N., Xie H., Mohamed A.A., Akiyama S., Yashiro S. Coronal hole influence on the observed structure of interplanetary CMEs // Solar Phys. V. 284. P. 59–75. 2013. https://doi.org/10.1007/s11207-012-0211-6
- Matzka J., Stolle C., Yamazaki Y., Bronkalla O., Morschhauser A. The geomagnetic Kp index and derived indices of geomagnetic activity // Space Weather. V. 19. № 5. ID e2020SW002641. 2021. https://doi.org/10.1029/2020SW002641
- Mishra W., Srivastava N., Singh T. Kinematics of interacting CMEs of 25 and 28 September 2012: interacting CMEs // J. Geophys. Res. – Space. V. 120. № 12. P. 10221–10236. 2015. https://doi.org/10.1002/2015JA021415
- Moon Y.J., Choe G.S., Wang H., Park Y.D. Sympathetic Coronal Mass Ejections // Astrophys. J. V. 588. № 2. P. 1176–1182. 2003. https://doi.org/10.1086/374270
- Odstrčil D., Dryer M., Smith Z. Propagation of an interplanetary shock along the heliospheric plasma sheet // J. Geophys. Res. V. 101. № A9. P.19973–19986. 1996. https://doi.org/10.1029/96JA00479
- Odstrčil D., Riley P., Zhao X.P. Numerical simulation of the 12 May 1997 interplanetary CME event // J. Geophys. Res. – Space. V. 109. № A2. ID A02116. 2004. https://doi.org/10.1029/2003JA010135
- Rodkin D.G., Shugay Y.S., Slemzin I.S., Veselovsky V. A. Interaction of high-speed and transient fluxes of solar wind at the maximum of solar cycle 24 // Bull. Lebedev Phys. Inst. V. 43. P. 287–290. 2016. https://doi.org/10.3103/S1068335616090062
- Rodkin D., Slemzin V., Zhukov A.N., Goryaev F., Shugay Y., Veselovsky I. Single ICMEs and Complex Transient Structures in the Solar Wind in 2010 – 2011 // Solar Phys. V. 293. ID 78. 2018. https://doi.org/10.1007/s11207-018-1295-4
- Schmidt J.M., Cargill P.J. A numerical study of two interacting coronal mass ejections // Ann. Geophys. V. 22. № 6. P. 2245–2254. 2004. https://doi.org/10.5194/angeo-22-2245-2004
- Shen F., Feng X.S., Wang Y., Wu S.T., Song W.B., Guo J.P., Zhou Y.F. Three-dimensional MHD simulation of two coronal mass ejections’ propagation and interaction using a successive magnetized plasma blobs model // J. Geophys. Res. – Space. V. 116. № A9. ID A09103. 2011. https://doi.org/10.1029/2011JA016584
- Shen F., Wu S.T., Feng X., Wu C.-C. Acceleration and deceleration of coronal mass ejections during propagation and interaction: acceleration and deceleration of CME // J. Geophys. Res. – Space. V. 117. № A11. ID A11101. 2012. https://doi.org/10.1029/2012JA017776
- Shen F., Wang Y., Shen C., Feng X. On the collision nature of two coronal mass ejections: A Review // Solar Phys. V. 292. ID 104. 2017. https://doi.org/10.1007/s11207-017-1129-9
- Shlyk N.S, Belov A.V., Abunina M.A., Abunin A.A., Oleneva V.A., Yanke V.G. Forbush decreases caused by paired interacting solar wind disturbances // Monthly Notices of the Royal Astronomical Society. V. 511. № 4. P. 5897–5908. 2022. https://doi.org/10.1093/mnras/stac478
- Temmer M., Veronig A.M., Peinhart V., Vršnak B. Asymmetry in the CME-CME interaction process for the events from 2011 February 14-15 // Astrophys. J. V. 785. № 2. ID 85. 2014. https://doi.org/10.1088/0004-637X/785/2/85
- Wang Y., Wang S., Ye P. Multiple magnetic clouds in interplanetary space // Solar Phys. V. 211. P. 333–344. 2002. https://doi.org/10.1023/A:1022404425398
- Wang Y.M., Ye P.Z., Wang S. Multiple magnetic clouds: several examples during March–April 2001 // J. Geophys. Res. V. 108. № A10. ID 1370. 2003. https://doi.org/10.1029/2003JA009850
- Wang Y., Liu L., Shen C., Liu R., Ye P., Wang S. Waiting times of quasi-homologous Coronal Mass Ejections from super active regions // Astrophys. J. Lett. V. 763. № 2. ID L43. 2013. https://doi.org/10.1088/2041-8205/763/2/L43
- Wang Y., Shen C., Liu R., Liu J., Guo J., Li X., Xu M., Hu Q., Zhang T. Understanding the twist distribution inside magnetic flux ropes by anatomizing an interplanetary magnetic cloud: twist distribution in an interplanetary MC // J. Geophys. Res. – Space. V. 123. № 5. P. 3238–3261. 2018. https://doi.org/10.1002/2017JA024971
- Xiong M., Zheng H., Wang S. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness: 2. Oblique collision // J. Geophys. Res. – Space. V. 114. № A11. ID A11101. 2009. https://doi.org/10.1029/2009JA014079
- Xiong M., Zheng H., Wang Y., Wang S. Magnetohydrodynamic simulation of the interaction between interplanetary strong shock and magnetic cloud and its consequent geoeffectiveness: 2. Oblique collision // J. Geophys. Res. – Space. V. 111. № A11. ID A11102. 2006. https://doi.org/10.1029/2006JA011901
- Xu M., Shen C., Wang Y., Luo B., Chi Y. Importance of shock compression in enhancing ICME’s geoeffectiveness // Astrophys. J. V. 884. № 2. ID L30. 2019. https://doi.org/10.3847/2041-8213/ab4717
- Yermolaev Y.I., Lodkina I.G., Khokhlachev A.A., Yermolaev M.Y. Peculiarities of the heliospheric state and the solar-wind/magnetosphere coupling in the era of weakened solar activity // Universe. V. 8. № 10. ID 495. 2022. https://doi.org/10.3390/universe8100495
- Zhang J., Wang J. Are Homologous Flare-Coronal Mass Ejection Events Triggered by Moving Magnetic Features? // Astrophys. J. V. 566. № 2. ID L117. 2002. https://doi.org/10.1086/339660
- Zhang J., Richardson I.G., Webb D.F. et al. Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005 // J. Geophys. Res. – Space. V. 112. № A10. ID A10102. 2007. https://doi.org/10.1029/2007JA012321
- Zhang J., Richardson I.G., Webb D.F. Interplanetary origin of multiple-dip geomagnetic storms // J. Geophys. Res. – Space. V. 113. № A3. ID A00A12. 2008. https://doi.org/10.1029/2008JA013228
- Zhang J., Temmer M., Gopalswamy N. et al. Earth-affecting solar transients: a review of progresses in solar cycle 24 // Prog. Earth Planet Sci. V. 8. ID 56. 2021. https://doi.org/10.1186/s40645-021-00426-7
- Zhou Y., Feng X. Numerical study of the propagation characteristics of coronal mass ejections in a structured ambient solar wind // J. Geophys. Res. – Space. V. 122. № 2. P. 1451–1462. 2017. https://doi.org/10.1002/2016JA023053
Қосымша файлдар
