Pitch-Angle Diffusion of Radiation Belt Electrons and Precipitating Particle Fluxes: Dependence on VLF Wavefield Parameters
- Autores: Demekhov A.G.1
-
Afiliações:
- .V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences
- Edição: Volume 64, Nº 2 (2024)
- Páginas: 294-302
- Seção: Articles
- URL: https://gynecology.orscience.ru/0016-7940/article/view/650948
- DOI: https://doi.org/10.31857/S0016794024020126
- EDN: https://elibrary.ru/DYGMLF
- ID: 650948
Citar
Resumo
The dependence of the pitch-angle diffusion efficiency of energetic electrons in the Earth’s magnetosphere on the distribution of the whistler wave field along the geomagnetic flux tube is quantitatively studied for parameters corresponding to the location of the Sura and HAARP HF heating facilities. The expansion of the precipitation energy range with the increase of the region of geomagnetic latitudes occupied by the waves is shown. Using the calculated pitch-angle diffusion coefficient for a given spectrum of waves and their distribution along the flux tube, the ratio of the fluxes of precipitating and trapped particles at low altitude is determined. It is shown that at typical wave intensities corresponding to chorus VLF waves and plasmaspheric hiss, the fluxes of precipitating and trapped electrons can be comparable to each other. At the same time, for the wave amplitudes observed as a result of the action of heating facilities, the flux of precipitating electrons is negligible.
Sobre autores
A. Demekhov
.V. Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences
Autor responsável pela correspondência
Email: andrei@ipfran.ru
Rússia, Nizhny Novgorod
Bibliografia
- Андронов А.А., Трахтенгерц В.Ю. Кинетическая неустойчивость внешнего радиационного пояса Земли // Геомагнетизм и аэрономия. 1964. Т. 4. № 2. С. 233—242.
- Беспалов П.А., Трахтенгерц В.Ю. Альфвеновские мазеры. Горький: ИПФ АН СССР, 1986. 190 с.
- Демехов А.Г., Трахтенгерц В.Ю., Райкрофт М., Нанн Д. Ускорение электронов в магнитосфере свистовыми волнами переменной частоты // Геомагнетизм и аэрономия. 2006. Т. 46. № 6. С. 751—756.
- Ковражкин Р.А., Могилевский М.М., Боске Ж.М. и др. Обнаружение высыпаний частиц из пояса кольцевого тока, стимулированных мощным наземным ОНЧ излучателем // Письма в ЖЭТФ. 1983. Т. 38. № 7. С. 332—333.
- Титова Е.Е., Демехов А.Г., Мочалов А.А., Гвоздевский Б.Б., Могилевский М.М., Парро М. КНЧ/ОНЧ возмущения над передатчиком HAARP, регистрируемые в верхней ионосфере на спутнике DEMETER // Изв. вузов. Радиофизика. 2015. Т. 58. № 3. С. 167—186.
- Трахтенгерц В.Ю., Райкрофт М. Дж. Свистовые и альфвеновские ионно-циклотронные мазеры в космосе. М.: Физматлит, 2011. 344 с.
- Фролов В.Л., Рапопорт В.О., Шорохова Е.А., Белов А.С., Парро М., Рош Ж.-Л. Характеристики электромагнитных и плазменных возмущений, индуцируемых на высотах внешней ионосферы Земли при модификации F2-области мощным КВ радиоизлучением стенда СУРА // Изв. вузов. Радиофизика. 2016. Т. 59. № 3. С. 198—222.
- Abel B., Thorne R.M. Electron scattering and loss in Earth’s inner magnetosphere: 1. Dominant physical processes // J. Geophys. Res. 1998. V. 103. № 2. P. 2385—2396.
- Abel B., Thorne R.M. Electron scattering and loss in Earth’s inner magnetosphere: 2. Sensitivity to model parameters // J. Geophys. Res. 1998. V. 103. № 2. P. 2397—2407.
- Artemyev A.V., Demekhov A.G., Zhang X.-J., et al. Role of ducting in relativistic electron loss by whistler-mode wave scattering // J. Geophys. Res. Space Phys. 2021. V. 126. № 11. Art. № e2021JA029851. https://doi.org/10.1029/2021JA029851
- Inan U.S., Bell T.F., Bortnik J., Albert J.M. Controlled precipitation of radiation belt electrons // J. Geophys. Res. 2003. V. 108. № A5. 1186. https://doi.org/10.1029/2002JA009580
- Kennel C.F., Engelmann F. Velocity Space Diffusion from weak plasma turbulence in a magnetic field // Phys. Fluids. 1966. V. 9. № 12. P. 2377—2388. https://doi.org/10.1063/1.1761629
- Lyons L.R. Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves // J. Plasma Phys. 1974. V. 12. Part 3. P. 417—432.
- Miyoshi Y., Saito S., Kurita S., et al. Relativistic electron microbursts as high-energy tail of pulsating aurora electrons // Geophys. Res. Lett. 2020. V. 47. № 21. Art. № e90360. https://doi.org/10.1029/2020GL090360
- Moldwin M.B., Downward L., Rassoul H.K., Amin R., Anderson R.R. A new model of the location of the plasmapause: CRRES results // J. Geophys. Res. 2002. V. 107. № A11. Art. № 1339. https://doi.org/10.1029/2001JA009211
- Mourenas D., Artemyev A.V., Ripoll J.-F., Agapitov O.V., Krasnoselskikh V.V. Timescales for electron quasi-linear diffusion by parallel and oblique lower-band chorus waves // J. Geophys. Res. 2012. V. 117. № A6. Art. № A06234. https://doi.org/10.1029/2012JA017717
- Pasmanik D.L., Demekhov A.G. Peculiarities of VLF wave propagation in the Earth’s magnetosphere in the presence of artificial large-scale inhomogeneity // J. Geophys. Res. Space Phys. 2017. V. 122. № 7. https://doi.org/10.1002/2017JA024118
- Parrot М., Němec F., Cohen M.B., Gołkowski M. On the use of ELF/VLF emissions triggered by HAARP to simulate PLHR and to study associated MLR events // Earth, Planets and Space. 2022. V. 74. № 1. Art. № 4. https://doi.org/10.1186/s40623-021-01551-9
- Rapoport V.O., Frolov V.L., Polyakov S.V., Komrakov G.P., Ryzhov N.A., Markov G.A., Belov A.S., Parrot M., Rauch J.‐L. VLF electromagnetic field structures in ionosphere disturbed by Sura RF heating facility // J. Geophys. Res. 2010. V. 115. № 10. Art. № A10322. https://doi.org/10.1029/2010JA015484
- Sauvaud J.-A., Maggiolo R., Jacquey C., Parrot M., Berthelier J.-J., Gamble R.J., Rodger C.J. Radiation belt electron precipitation due to VLF transmitters: Satellite observations // Geophys. Res. Lett. 2008. V. 35. № 9. Art. № L09101. https://doi.org/10.1029/2008GL033194
- Santolík O., Macúšová E., Kolmašová I., Cornilleau-Wehrlin N., de Conchy Y. Propagation of lower-band whistler-mode waves in the outer Van Allen belt: Systematic analysis of 11 years of multi-component data from the Cluster spacecraft // Geophys. Res. Lett. 2014. V. 41. № 8. P. 2729—2737. https://doi.org/10.1002/2014GL059815
- Sheeley B.W., Moldwin M.B., Rassoul H.K., Anderson R.R. An empirical plasmasphere and trough density model: CRRES observations // J. Geophys. Res. 2001. V. 106. № 11. P. 25631—25641. https://doi.org/10.1029/2000JA000286
- Steinacker J., Miller J.A. Stochastic gyroresonant electron acceleration in a low-beta plasma. I. Interaction with parallel transverse cold plasma waves // Astrophys. J. 1992. V. 393. P. 764—781.
- Stubbe P. Review of ionospheric modification experiments at Tromsø // J. Atmos. Terr. Phys. 1996. V. 58. № 1—4. P. 349—368. https://doi.org/10.1016/0021-9169(95)00041
- Trakhtengerts V.Y., Rycroft M.J., Nunn D., Demekhov A.G. Cyclotron acceleration of radiation belt electrons by whistlers // J. Geophys. Res. 2003. V. 108. № A3. Art. № 1138. https://doi.org/10.1029/2002JA009559
- Vas’kov V.V., Bud’ko N.I., Kapustina O.V., Mikhailov Y.M., Ryabova N.A., Gdalevich G.L., Komrakov G.P., Maresov A.N. Detection on the INTERCOSMOS-24 satellite of VLF and ELF waves stimulated in the topside ionosphere by the heating facility SURA // J. Atmos. Sol.-Terr. Phys. 1998. V. 60. № 12. P. 1261—1274. https://doi.org/10.1016/S1364-6826(98)00054-6
Arquivos suplementares
