Main time characteristics of cosmic ray variations and related parameters in magnetic clouds

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The behavior of the main parameters of the interplanetary medium, cosmic rays, and geomagnetic activity during the passage of magnetic clouds past the Earth (465 events over the period from 1967 to 2021) has been studied. Time distributions of these parameters inside magnetic clouds are considered. It is shown that the maximum values of the solar wind velocity, interplanetary magnetic field strength, and geomagnetic activity indices are more often recorded at the beginning of the magnetic cloud, while the minimum values of the temperature index, cosmic ray density and equatorial component of anisotropy can be observed in any part of the structure under study.

全文:

受限制的访问

作者简介

M. Abunina

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

编辑信件的主要联系方式.
Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk

A. Belov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk

N. Shlyk

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk

A. Abunin

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk

A. Melkumyan

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk

I. Pryamushkina

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk

V. Oleneva

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk

V. Yanke

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)

Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk

参考

  1. Абунина М.А., Белов А.В., Шлык Н.С., Абунин А.А., Оленева В.А., Прямушкина И.И., Янке В.Г. Форбуш-эффекты, созданные выбросами солнечного вещества с магнитными облаками // Геомагнетизм и аэрономия. Т. 61. № 5. С. 572–582. 2021. https://doi.org/10.31857/S0016794021050023
  2. Белов А.В., Абунин А.А., Абунина М.А., Ерошенко Е.А., Оленева В.А., Янке В.Г. Вариации плотности галактических космических лучей в магнитных облаках // Геомагнетизм и аэрономия. Т. 55. № 4. С. 445—456. 2015. https://doi.org/10.7868/S0016794015040021
  3. Белов А.В., Ерошенко Е.А., Янке В.Г., Оленева В.А., Абунина М.А., Абунин А.А. Метод глобальной съемки для мировой сети нейтронных мониторов // Геомагнетизм и аэрономия. Т. 58. № 3. С. 374–389. 2018. https://doi.org/10.7868/S0016794018030082
  4. Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномасштабных явлений солнечного ветра для периода 1976–2000 гг. // Космич. исслед. Т. 47. № 2. С. 99–113. 2009.
  5. Мелкумян А.А., Белов А.В., Абунина М.А., Шлык Н.С., Абунин А.А., Оленева В.А., Янке В.Г. Сходство и различие Форбуш-понижений, связанных с потоками из корональных дыр, волоконными выбросами и выбросами из активных областей // Геомагнетизм и аэрономия. Т. 62. № 3. С. 283–301. 2022а. https://doi.org/10.31857/S0016794022030117
  6. Мелкумян А.А., Белов А.В., Абунина М.А., Шлык Н.С., Абунин А.А., Оленева В.А., Янке В.Г. Особенности поведения временных параметров Форбуш-понижений, связанных с разными типами солнечных и межпланетных источников // Геомагнетизм и аэрономия. Т. 62. № 2. С. 155–170. 2022б. https://doi.org/10.31857/S0016794022010138
  7. Мелкумян А.А., Белов А.В., Абунина М.А., Абунин А.А., Ерошенко Е.А., Оленева В.А., Янке В.Г. Поведение скорости и температуры солнечного ветра в межпланетных возмущениях, создающих Форбуш-понижения // Геомагнетизм и аэрономия. Т. 60. № 5. C. 547–556. 2020. https://doi.org/10.31857/S0016794020040100
  8. Badruddin, Yadav R.S., Yadav N.R. Influence of magnetic clouds on cosmic ray intensity variation // Solar Phys. V. 105. № 2. P. 413–428. 1986. https://doi.org/10.1007/BF00172057
  9. Belov A.V., Eroshenko E.A., Oleneva V.A., Struminsky A.B., Yanke V.G. What determines the magnitude of Forbush decreases? // Adv. Space Res. V. 27. P. 625–630. 2001.
  10. Belov A., Abunin A., Abunina M., Eroshenko E., Oleneva V., Yanke V., Papaioannou A., Mavromichalaki H. Galactic cosmic ray density variations in magnetic clouds // Solar Phys. V. 290. P. 1429–1444. 2015. https://doi.org/10.1007/s11207-015-0678-z
  11. Bothmer V., Schwenn R. The structure and origin of magnetic clouds in the solar wind // Ann. Geophys. V. 16. P. 1–24. 1998.
  12. Burlaga L., Sittler E., Mariani F., Schwenn R. Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations // J. Geophys. Res. V. 86. P. 6673–6684. 1981. https://doi.org/10.1029/JA086iA08p06673
  13. Burlaga L.F., Behannon K.W. Magnetic clouds: Voyager observations between 2 and 4 AU // Solar Phys. V. 81. P. 181–192. 1982. https://doi.org/10.1007/BF00151989
  14. Burlaga L.F., Behannon K.W., Klein L.W. Compound Streams, Magnetic Clouds, and Major Geomagnetic Storms // J. Geophys. Res. V. 92. № A6. P. 5725–5734. 1987.
  15. Burlaga L. Magnetic Clouds / Physics of the Inner Heliosphere II. Physics and Chemistry in Space (Space and Solar Physics). V. 21. Eds. Schwenn R., Marsch E. Berlin, Heidelberg: Springer, 1991. 352 p. https://doi.org/10.1007/978-3-642-75364-0_1
  16. Fadaaq M., Badruddin B. Modulation of galactic cosmic rays due to magnetic clouds and associated structures in the interplanetary space: 1996–2018 // Astrophys. V. 64. № 2. P. 210–218. 2021a. https://doi.org/10.1007/s10511-021-09682-3
  17. Fadaaq M., Badruddin B. Study of transient modulation of galactic cosmic rays due to interplanetary manifestations of coronalmass ejections: 2010–2017 // Astrophys. Space Sci. V. 366. Article ID 10. 2021b. https://doi.org/10.1007/s10509-021-03918-6
  18. Forbush S.E. On the Effects in Cosmic-Ray Intensity Observed During the Recent Magnetic Storm // Phys. Rev. V. 51. P. 1108–1109. 1937. https://doi.org/10.1103/PhysRev. 51. 1108. 3
  19. Gopalswamy N., Xie H., Mäkelä P., Akiyama S., Yashiro S., Kaiser M.L., Howard R.A., Bougeret J.-L. Interplanetary shocks lacking type II radio bursts // Astrophys. J. V. 710. P. 1111–1126. 2010. https://doi.org/10.1088/0004-637X/710/2/1111
  20. Gosling J.T. Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space // Geophys. Monogr. Ser. V. 58. P. 343–364. 1990.
  21. Gosling J.T., Bame S.J., McComas D.J., Phillips J.L. Coronal mass ejections and large geomagnetic storms // Geophys. Res. Lett. V. 17. № 7. P. 901–904. 1990. https://doi.org/10.1029/GL017i007p00901
  22. Hidalgo M.A., Cid C., Viñas A.F., Sequeiros J. A non–force-free approach to the topology of magnetic clouds in the solar wind // J. Geophys. Res. V. 107. № A1. P. SSH1-1–SSH 1-7. 2002. https://doi.org/10.1029/2001JA900100
  23. Huttunen K., Schwenn R., Bothmer V., Koskinen H. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23 // Ann. Geophys. V. 23. P. 625–641. 2005. https://doi.org/10.5194/angeo-23-625-2005
  24. Kim R.-S., Gopalswamy N., Cho K.-S., Moon Y.-J., Yashiro S. Propagation Characteristics of CMEs Associated with Magnetic Clouds and Ejecta // Solar Phys. V. 284. P. 77–88. 2013. https://doi.org/10.1007/s11207-013-0230-y
  25. King J.H., Lepping R.P., Sullivan J.D. On the Complex State of the Interplanetary Medium of July 28-29, 1977 // J. Geophys. Res. V. 87. № A8. P. 5881–5887. 1982.
  26. Klein L., Burlaga L. Interplanetary magnetic clouds at 1 AU // J. Geophys. Res. V. 87. № A2. P. 613–624. 1982. https://doi.org/10.1029/JA087iA02p00613
  27. Kumar A., Badruddin Interplanetary coronal mass ejections, associated features, and transient modulation of galactic cosmic rays // Solar Phys. V. 289. P. 2177–2205. 2014. https://doi.org/10.1007/s11207-013-0465-7
  28. Lepping R.P., Jones J.A., Burlaga L.F. Magnetic Field Structure of Interplanetary Magnetic Clouds at 1 AU // J. Geophys. Res. V. 95. № A8. P. 11957–11965. 1990.
  29. Lockwood J.A. Forbush decreases in the cosmic radiation // Space Sci. Revs. V. 12. № 5. P. 658–715. 1971. https://doi.org/10.1007/ BF00173346.
  30. Lockwood J.A., Webber W.R., Debrunner H. Forbush decreases and interplanetary magnetic field disturbances: Association with magnetic clouds // J. Geophys. Res. V. 96. № A7. P. 11587–11604. 1991. https://doi.org/10.1029/91JA01012
  31. Lynch B.J., Zurbuchen T.H., Fisk L.A. Internal structure of magnetic clouds: Plasma and composition // J. Geophys. Res. V. 108. № A6. P. SSH6-1–SSH 6-14. 2003. https://doi.org/10.1029/2002JA009591
  32. Lynch B.J., Gruesbeck J.R., Zurbuchen T.H., Antiochos S.K. Solar cycle–dependent helicity transport by magnetic clouds // J. Geophys. Res. V. 110. Article ID A08107. 2005. https://doi.org/10.1029/2005JA011137
  33. Marubashi K., Lepping R. Long-duration magnetic clouds: a comparison of analyses using torus–and cylinder-shaped flux rope models // Ann. Geophys. V. 25. № 11. P. 2453–2477. 2007. https://doi.org/10.5194/angeo-25-2453-2007
  34. Mas´ıas-Meza J.J., Dasso S., D´emoulin P., Rodriguez L., Janvier M. Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays // Astronomy & Astrophysics. V. 592. Article ID A118. 2016. https://doi.org/10.1051/0004-6361/201628571
  35. Matzka J., Stolle C., Yamazaki Y., Bronkalla O., Morschhauser A. The geomagnetic Kp index and derived indices of geomagnetic activity // Space Weather. V. 19. № 5. Article ID e2020SW002641. 2021.
  36. Melkumyan A.A., Belov A.V., Abunina M.A., Abunin A.A., Eroshenko E.A., Yanke V.G., Oleneva V.A. Solar wind temperature-velocity relationship over the last five solar cycles and Forbush decreases associated with different types of interplanetary disturbance // MNRAS. V. 500. P. 2786–8797. 2021. https://doi.org/10.1093/mnras/staa3366
  37. Parnahaj I., Kudela K. Forbush decreases at a middle latitude neutron monitor: relations to geomagnetic activity and to interplanetary plasma structures // Astrophys. Space Sci. V. 359. Article ID 35. 2015. https://doi.org/10.1007/s10509-015-2484-3
  38. Richardson I.G., Cane H.V. Near-Earth Interplanetary Coronal Mass Ejections during Solar Cycle 23 (1996–2009): Catalog and summary of properties // Solar Phys. V. 264. P. 189–237. 2010. https://doi.org/10.1007/s11207-010-9568-6
  39. Richardson I.G., Cane H.V. Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995 – 2009 // Solar Phys. V. 270. P. 609–627. 2011. https://doi.org/10.1007/s11207-011-9774-x
  40. Shlyk N.S., Belov A.V., Abunina M.A., Abunin A.A., Oleneva V.A., Yanke V.G. Forbush decreases caused by paired interacting solar wind disturbances // MNRAS. V. 511. № 4. P. 5897–5908. 2022. https://doi.org/10.1093/mnras/stac478
  41. Tsurutani B., Gonzalez W., Tang F., Akasofu S.I., Smith E.J. Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979) // J. Geophys. Res. V. 93. № A8. P. 8519–8531. 1988.
  42. Tsurutani B., Gonzalez W. The Interplanetary Causes of Magnetic Storms: A Review. Eds. Tsurutani B.T., Gonzalez W.D., Kamide Y., Arballo J.K. Geophys. Monogr. Ser. / Wash. DC Am. Geophys. Union. P. 77–89. 1997. https://doi.org/10.1029/GM098p0077
  43. Wang Y.M., Ye P.Z., Wang S. Multiple magnetic clouds: Several examples during March–April 2001 // J. Geophys. Res. V. 108. № A10. Article ID 1370. 2003. https://doi.org/10.1029/2003JA009850
  44. Wu C.-C., Lepping R.P. Relationships Among Geomagnetic Storms, Interplanetary Shocks, Magnetic Clouds, and Sunspot Number During 1995–2012 // Solar Phys. V. 291. P. 265–284. 2016. https://doi.org/10.1007/s11207-015-0806-9
  45. Zhang G., Burlaga L. Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases // J. Geophys. Res. V. 93. № A4. P. 2511–2518. 1988. https://doi.org/10.1029/JA093iA04p02511

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Variations in the main parameters of SW, IMF, CR and GA during the Forbush effect on November 3–5, 2021.

下载 (420KB)
3. Fig. 2. Distributions of maximum values of SW velocity (a) and IMF induction (b) inside the MC.

下载 (182KB)
4. Fig. 3. Distributions of maximum values of SW velocity (a) and IMF induction (b) inside the MC in interplanetary disturbances without interaction with the next event.

下载 (157KB)
5. Fig. 4. Distributions of extreme values of geomagnetic indices within the MC: (a) Ap index and (b) Dst index.

下载 (157KB)
6. Fig. 5. Relationship between the maximum values of CR density variations inside the MO and the time of their recording. The triangles indicate the times of maximum variations in the CR density inside the MO for PV with a value >7%.

下载 (257KB)

版权所有 © Russian Academy of Sciences, 2024