Main time characteristics of cosmic ray variations and related parameters in magnetic clouds
- 作者: Abunina M.A.1, Belov A.V.1, Shlyk N.S.1, Abunin A.A.1, Melkumyan A.A.1, Pryamushkina I.I.1, Oleneva V.A.1, Yanke V.G.1
-
隶属关系:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
- 期: 卷 64, 编号 1 (2024)
- 页面: 29-38
- 栏目: Articles
- URL: https://gynecology.orscience.ru/0016-7940/article/view/650954
- DOI: https://doi.org/10.31857/S0016794024010048
- EDN: https://elibrary.ru/GQQPUX
- ID: 650954
如何引用文章
详细
The behavior of the main parameters of the interplanetary medium, cosmic rays, and geomagnetic activity during the passage of magnetic clouds past the Earth (465 events over the period from 1967 to 2021) has been studied. Time distributions of these parameters inside magnetic clouds are considered. It is shown that the maximum values of the solar wind velocity, interplanetary magnetic field strength, and geomagnetic activity indices are more often recorded at the beginning of the magnetic cloud, while the minimum values of the temperature index, cosmic ray density and equatorial component of anisotropy can be observed in any part of the structure under study.
全文:

作者简介
M. Abunina
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
编辑信件的主要联系方式.
Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk
A. Belov
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk
N. Shlyk
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk
A. Abunin
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk
A. Melkumyan
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk
I. Pryamushkina
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk
V. Oleneva
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk
V. Yanke
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
Email: abunina@izmiran.ru
俄罗斯联邦, Moscow, Troitsk
参考
- Абунина М.А., Белов А.В., Шлык Н.С., Абунин А.А., Оленева В.А., Прямушкина И.И., Янке В.Г. Форбуш-эффекты, созданные выбросами солнечного вещества с магнитными облаками // Геомагнетизм и аэрономия. Т. 61. № 5. С. 572–582. 2021. https://doi.org/10.31857/S0016794021050023
- Белов А.В., Абунин А.А., Абунина М.А., Ерошенко Е.А., Оленева В.А., Янке В.Г. Вариации плотности галактических космических лучей в магнитных облаках // Геомагнетизм и аэрономия. Т. 55. № 4. С. 445—456. 2015. https://doi.org/10.7868/S0016794015040021
- Белов А.В., Ерошенко Е.А., Янке В.Г., Оленева В.А., Абунина М.А., Абунин А.А. Метод глобальной съемки для мировой сети нейтронных мониторов // Геомагнетизм и аэрономия. Т. 58. № 3. С. 374–389. 2018. https://doi.org/10.7868/S0016794018030082
- Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномасштабных явлений солнечного ветра для периода 1976–2000 гг. // Космич. исслед. Т. 47. № 2. С. 99–113. 2009.
- Мелкумян А.А., Белов А.В., Абунина М.А., Шлык Н.С., Абунин А.А., Оленева В.А., Янке В.Г. Сходство и различие Форбуш-понижений, связанных с потоками из корональных дыр, волоконными выбросами и выбросами из активных областей // Геомагнетизм и аэрономия. Т. 62. № 3. С. 283–301. 2022а. https://doi.org/10.31857/S0016794022030117
- Мелкумян А.А., Белов А.В., Абунина М.А., Шлык Н.С., Абунин А.А., Оленева В.А., Янке В.Г. Особенности поведения временных параметров Форбуш-понижений, связанных с разными типами солнечных и межпланетных источников // Геомагнетизм и аэрономия. Т. 62. № 2. С. 155–170. 2022б. https://doi.org/10.31857/S0016794022010138
- Мелкумян А.А., Белов А.В., Абунина М.А., Абунин А.А., Ерошенко Е.А., Оленева В.А., Янке В.Г. Поведение скорости и температуры солнечного ветра в межпланетных возмущениях, создающих Форбуш-понижения // Геомагнетизм и аэрономия. Т. 60. № 5. C. 547–556. 2020. https://doi.org/10.31857/S0016794020040100
- Badruddin, Yadav R.S., Yadav N.R. Influence of magnetic clouds on cosmic ray intensity variation // Solar Phys. V. 105. № 2. P. 413–428. 1986. https://doi.org/10.1007/BF00172057
- Belov A.V., Eroshenko E.A., Oleneva V.A., Struminsky A.B., Yanke V.G. What determines the magnitude of Forbush decreases? // Adv. Space Res. V. 27. P. 625–630. 2001.
- Belov A., Abunin A., Abunina M., Eroshenko E., Oleneva V., Yanke V., Papaioannou A., Mavromichalaki H. Galactic cosmic ray density variations in magnetic clouds // Solar Phys. V. 290. P. 1429–1444. 2015. https://doi.org/10.1007/s11207-015-0678-z
- Bothmer V., Schwenn R. The structure and origin of magnetic clouds in the solar wind // Ann. Geophys. V. 16. P. 1–24. 1998.
- Burlaga L., Sittler E., Mariani F., Schwenn R. Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations // J. Geophys. Res. V. 86. P. 6673–6684. 1981. https://doi.org/10.1029/JA086iA08p06673
- Burlaga L.F., Behannon K.W. Magnetic clouds: Voyager observations between 2 and 4 AU // Solar Phys. V. 81. P. 181–192. 1982. https://doi.org/10.1007/BF00151989
- Burlaga L.F., Behannon K.W., Klein L.W. Compound Streams, Magnetic Clouds, and Major Geomagnetic Storms // J. Geophys. Res. V. 92. № A6. P. 5725–5734. 1987.
- Burlaga L. Magnetic Clouds / Physics of the Inner Heliosphere II. Physics and Chemistry in Space (Space and Solar Physics). V. 21. Eds. Schwenn R., Marsch E. Berlin, Heidelberg: Springer, 1991. 352 p. https://doi.org/10.1007/978-3-642-75364-0_1
- Fadaaq M., Badruddin B. Modulation of galactic cosmic rays due to magnetic clouds and associated structures in the interplanetary space: 1996–2018 // Astrophys. V. 64. № 2. P. 210–218. 2021a. https://doi.org/10.1007/s10511-021-09682-3
- Fadaaq M., Badruddin B. Study of transient modulation of galactic cosmic rays due to interplanetary manifestations of coronalmass ejections: 2010–2017 // Astrophys. Space Sci. V. 366. Article ID 10. 2021b. https://doi.org/10.1007/s10509-021-03918-6
- Forbush S.E. On the Effects in Cosmic-Ray Intensity Observed During the Recent Magnetic Storm // Phys. Rev. V. 51. P. 1108–1109. 1937. https://doi.org/10.1103/PhysRev. 51. 1108. 3
- Gopalswamy N., Xie H., Mäkelä P., Akiyama S., Yashiro S., Kaiser M.L., Howard R.A., Bougeret J.-L. Interplanetary shocks lacking type II radio bursts // Astrophys. J. V. 710. P. 1111–1126. 2010. https://doi.org/10.1088/0004-637X/710/2/1111
- Gosling J.T. Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space // Geophys. Monogr. Ser. V. 58. P. 343–364. 1990.
- Gosling J.T., Bame S.J., McComas D.J., Phillips J.L. Coronal mass ejections and large geomagnetic storms // Geophys. Res. Lett. V. 17. № 7. P. 901–904. 1990. https://doi.org/10.1029/GL017i007p00901
- Hidalgo M.A., Cid C., Viñas A.F., Sequeiros J. A non–force-free approach to the topology of magnetic clouds in the solar wind // J. Geophys. Res. V. 107. № A1. P. SSH1-1–SSH 1-7. 2002. https://doi.org/10.1029/2001JA900100
- Huttunen K., Schwenn R., Bothmer V., Koskinen H. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23 // Ann. Geophys. V. 23. P. 625–641. 2005. https://doi.org/10.5194/angeo-23-625-2005
- Kim R.-S., Gopalswamy N., Cho K.-S., Moon Y.-J., Yashiro S. Propagation Characteristics of CMEs Associated with Magnetic Clouds and Ejecta // Solar Phys. V. 284. P. 77–88. 2013. https://doi.org/10.1007/s11207-013-0230-y
- King J.H., Lepping R.P., Sullivan J.D. On the Complex State of the Interplanetary Medium of July 28-29, 1977 // J. Geophys. Res. V. 87. № A8. P. 5881–5887. 1982.
- Klein L., Burlaga L. Interplanetary magnetic clouds at 1 AU // J. Geophys. Res. V. 87. № A2. P. 613–624. 1982. https://doi.org/10.1029/JA087iA02p00613
- Kumar A., Badruddin Interplanetary coronal mass ejections, associated features, and transient modulation of galactic cosmic rays // Solar Phys. V. 289. P. 2177–2205. 2014. https://doi.org/10.1007/s11207-013-0465-7
- Lepping R.P., Jones J.A., Burlaga L.F. Magnetic Field Structure of Interplanetary Magnetic Clouds at 1 AU // J. Geophys. Res. V. 95. № A8. P. 11957–11965. 1990.
- Lockwood J.A. Forbush decreases in the cosmic radiation // Space Sci. Revs. V. 12. № 5. P. 658–715. 1971. https://doi.org/10.1007/ BF00173346.
- Lockwood J.A., Webber W.R., Debrunner H. Forbush decreases and interplanetary magnetic field disturbances: Association with magnetic clouds // J. Geophys. Res. V. 96. № A7. P. 11587–11604. 1991. https://doi.org/10.1029/91JA01012
- Lynch B.J., Zurbuchen T.H., Fisk L.A. Internal structure of magnetic clouds: Plasma and composition // J. Geophys. Res. V. 108. № A6. P. SSH6-1–SSH 6-14. 2003. https://doi.org/10.1029/2002JA009591
- Lynch B.J., Gruesbeck J.R., Zurbuchen T.H., Antiochos S.K. Solar cycle–dependent helicity transport by magnetic clouds // J. Geophys. Res. V. 110. Article ID A08107. 2005. https://doi.org/10.1029/2005JA011137
- Marubashi K., Lepping R. Long-duration magnetic clouds: a comparison of analyses using torus–and cylinder-shaped flux rope models // Ann. Geophys. V. 25. № 11. P. 2453–2477. 2007. https://doi.org/10.5194/angeo-25-2453-2007
- Mas´ıas-Meza J.J., Dasso S., D´emoulin P., Rodriguez L., Janvier M. Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays // Astronomy & Astrophysics. V. 592. Article ID A118. 2016. https://doi.org/10.1051/0004-6361/201628571
- Matzka J., Stolle C., Yamazaki Y., Bronkalla O., Morschhauser A. The geomagnetic Kp index and derived indices of geomagnetic activity // Space Weather. V. 19. № 5. Article ID e2020SW002641. 2021.
- Melkumyan A.A., Belov A.V., Abunina M.A., Abunin A.A., Eroshenko E.A., Yanke V.G., Oleneva V.A. Solar wind temperature-velocity relationship over the last five solar cycles and Forbush decreases associated with different types of interplanetary disturbance // MNRAS. V. 500. P. 2786–8797. 2021. https://doi.org/10.1093/mnras/staa3366
- Parnahaj I., Kudela K. Forbush decreases at a middle latitude neutron monitor: relations to geomagnetic activity and to interplanetary plasma structures // Astrophys. Space Sci. V. 359. Article ID 35. 2015. https://doi.org/10.1007/s10509-015-2484-3
- Richardson I.G., Cane H.V. Near-Earth Interplanetary Coronal Mass Ejections during Solar Cycle 23 (1996–2009): Catalog and summary of properties // Solar Phys. V. 264. P. 189–237. 2010. https://doi.org/10.1007/s11207-010-9568-6
- Richardson I.G., Cane H.V. Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995 – 2009 // Solar Phys. V. 270. P. 609–627. 2011. https://doi.org/10.1007/s11207-011-9774-x
- Shlyk N.S., Belov A.V., Abunina M.A., Abunin A.A., Oleneva V.A., Yanke V.G. Forbush decreases caused by paired interacting solar wind disturbances // MNRAS. V. 511. № 4. P. 5897–5908. 2022. https://doi.org/10.1093/mnras/stac478
- Tsurutani B., Gonzalez W., Tang F., Akasofu S.I., Smith E.J. Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979) // J. Geophys. Res. V. 93. № A8. P. 8519–8531. 1988.
- Tsurutani B., Gonzalez W. The Interplanetary Causes of Magnetic Storms: A Review. Eds. Tsurutani B.T., Gonzalez W.D., Kamide Y., Arballo J.K. Geophys. Monogr. Ser. / Wash. DC Am. Geophys. Union. P. 77–89. 1997. https://doi.org/10.1029/GM098p0077
- Wang Y.M., Ye P.Z., Wang S. Multiple magnetic clouds: Several examples during March–April 2001 // J. Geophys. Res. V. 108. № A10. Article ID 1370. 2003. https://doi.org/10.1029/2003JA009850
- Wu C.-C., Lepping R.P. Relationships Among Geomagnetic Storms, Interplanetary Shocks, Magnetic Clouds, and Sunspot Number During 1995–2012 // Solar Phys. V. 291. P. 265–284. 2016. https://doi.org/10.1007/s11207-015-0806-9
- Zhang G., Burlaga L. Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases // J. Geophys. Res. V. 93. № A4. P. 2511–2518. 1988. https://doi.org/10.1029/JA093iA04p02511
补充文件
