Calculation of Geomagnetic Cutoff Rigidity Using Tracing Based on the Buneman–Boris Method

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The work includes the development of a method for determining the rigidity of geomagnetic cutoff based on tracing charged particles in the Earth’s magnetic field using the particle-in-cell method, implemented in the Buneman–Boris scheme. To test the method, calculations of the geomagnetic cutoff rigidity were carried out in the field of an ideal dipole and in the field specified by the IGRF model. In the first case, the obtained data were compared with analytical values. The calculation accuracy in this case was 3 MV. In the second case, the penumbra pattern was reproduced at different geographical points for different periods, and the stability of the method to small perturbations of the initial parameters was also investigated. As the main results of the work, maps of geomagnetic cutoff rigidity at the altitudes of low-orbit satellites for different directions in space, as well as their variations from 1900 to 2015, were constructed and analyzed.

Texto integral

Acesso é fechado

Sobre autores

P. Kruchinin

Moscow Engineering Physics Institute

Autor responsável pela correspondência
Email: kruchinin_01@inbox.ru
Rússia, Moscow

V. Malakhov

Moscow Engineering Physics Institute

Email: vvmalakhov@mephi.ru
Rússia, Moscow

V. Golubkov

Moscow Engineering Physics Institute

Email: vlad10433@mail.ru
Rússia, Moscow

A. Mayorov

Moscow Engineering Physics Institute

Email: agmayorov@mephi.ru
Rússia, Moscow

Bibliografia

  1. Голубков В.С., Майоров А.Г. Пакет программ для численных расчетов траектории частиц в магнитосфере Земли и его применение для обработки данных эксперимента PAMELA // Изв. РАН. Сер. физ. Т. 85. № 4. С. 512–514. 2021.
  2. Данилова О.А., Птицына Н.Г., Тясто М.И., Сдобнов В.E. Изменения жесткостей обрезания космических лучей во время бури 8–11 марта 2012 г. в период CAWSES-II // Солнечно-земная физика. Т. 9. № 2. 2023. https://doi.org/10.12737/szf-92202310
  3. Птицына Н.Г., Данилова О.А., Тясто М.И., Сдобнов В.Е. Динамика жесткости геомагнитного обрезания космических лучей и параметров магнитосферы во время разных фаз бури 20 ноября 2003 г. // Геомагнетизм и аэрономия. Т. 61. № 2. С. 160–171. 2021. https://doi.org/10.31857/S0016794021010120
  4. Тясто М.И., Данилова О.А., Птицына Н.Г., Сдобнов В.Е. Вариации жесткостей обрезания космических лучей во время сильной геомагнитной бури в ноябре 2004 г. // Солнечно-земная физика. Т. 1. № 2. C. 97–105. 2015. https://doi.org/10.12737/7890
  5. Adriani O., Barbarino G.C., Bazilevskaya G.A. et al. PAMELA’smeasurements of geomagnetic cutoff variations during the 14 December 2006 storm // Space Weather. V. 14. P. 210–220. 2016. https://doi.org/10.1002/2016SW001364
  6. Alken P., Thébault E., Beggan C.D. et al. International Geomagnetic Reference Field – The Thirteen Generation // Earth, Planets and Space. V. 73:49. 2021. https://doi.org/10.1186/s40623-020-01288-x
  7. Boris J.P. The acceleration calculation from a scalar potential // Technical report MATT-152, Princeton: Princeton Univ. 1970.
  8. Boris J.P. Relativistic plasma simulation-optimization of a hybrid code // Proc. 4th Conf. on Numerical Simulation of Plasmas, Washington. P. 3. 1971.
  9. Gelvam A., Hartmann, Pacca I.G. Time evolution of the South Atlantic Magnetic Anomaly // Anais da Academia Brasileira de Ciências. V.81. №2. P. 243–255. 2009.
  10. Koldobskiy S.A., Bindi V., Corti C., Kovaltsov G.A., Usoskin I.G. Validation of the Neutron Monitor Yield Function Using Data From AMS-02 Experiment, 2011–2017 // J. Geophys. Res. Space Physics. 124. P. 2367 – 2379. 2019. https://doi.org/10.1029/2018JA026340
  11. Kress B.T., Hudson M.K., Selesnick R.S., Mertens C.J., Engel M. Modeling geomagnetic cutoffs for space weather applications // J. Geophys. Res. Space Physics. V. 120. 5694–5702. https://doi.org/10.1002/2014JA020899
  12. Mao H. and Wirz R.E. // Comparison of Charged Particle Tracking Methods for Non-Uniform Magnetic Fields // 42nd AIAA Plasmadynamics and Lasers Conference. 2011.
  13. Mishev A.L., Koldobskiy S.A., Kovaltsov G.A., Gil A., Usoskin I.G. Updated Neutron-Monitor Yield Function: Bridging Between In Situ and Ground-Based Cosmic Ray Measurements // J. Geophys. Res. Space Physics. 125. 2020. https://doi.org/10.1029/2019JA027433
  14. Mishev A., Poluianov S. About the Altitude Profile of the Atmospheric Cut-Off of Cosmic Rays: New Revised Assessment // Solar Physics. V. 296:129. 2021. https://doi.org/10.1007/s11207-021-01875-5
  15. Qin R., Zhang S., Xiao J., Liu J., Sun Y. Tang W. // Why is Boris algorithm so good? // Physics of Plasmas V. 20.8. P. 084503. 2013. https://doi.org/10.1063/1.4818428
  16. Sarkar R., Roy A. Monte Carlo simulation of CRAND protons trapped at low Earth orbits // Adv. Space Res. V. 69. P. 197–208. 2022. https://doi.org/10.1016/j.asr.2021.10.006
  17. Selesnick R.S., Looper M.D., Mewaldt R.A. A theoretical model of the inner proton radiation belt // Space Weather. V. 5. 2007. https://doi.org/10.1029/2006SW000275.
  18. Smart D.F., Shea M.A. Geomagnetic cutoffs: A review for space dosimetry applications // Adv. Space Res. V. 14. № 10. P. 787–796. 1994.
  19. Smart D.F., Shea M.A. A review of geomagnetic cutoff rigidities for earth-orbiting spacecraft// Adv. Space Res. V. 36. P. 2012–2020. 2005.
  20. Smart D.F., Shea M.A. Fifty years of progress in geomagnetic cutoff rigidity determinations // Adv. Space Res. V. 44. P. 1107–1123. 2009.
  21. Smart D.F., Shea M.A. Vertical Geomagnetic Cutoff Rigidities for Epoch 2015 // Proceedings of science. 2019. // 36th International Cosmic Ray Conference. ICRC2019. July 24th August 1st. 2019.
  22. Stormer C. The Polar Aurora. Clarendon Press Oxford. 1955

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Map of the LGE deviations of the modelled particle relative to the value obtained from the Störmer formula for the geomagnetic latitude λ = 30°. The distance is 5 Earth radii from the centre of the dipole.

Baixar (154KB)
3. Fig. 2. Dependence on latitude of the relative difference between the calculated and theoretical values of the LGE. Distance: 5 Earth radii from the centre of the dipole.

Baixar (67KB)
4. Fig. 3. Illustration of the penumbra of geomagnetic clipping. Sioux Falls. IGRF-13 model (left). 1975. Altitude 30 km. The zenith angle of the particle arrival is 5°. On the right is the result of Smart and Shea [D.F. Smart and M.A. Shea, 2009]. White denotes the allowed regions, black denotes the forbidden regions.

Baixar (207KB)
5. Fig. 4. Study of the stability of the geomagnetic clipping penumbra from the initial parameters of particle arrivals.

Baixar (359KB)
6. Fig. 5. Geomagnetic clipping stiffness map for (a) vertical particle arrival direction; (b) zenith angle 15°, azimuth angle 200°; (c) zenith angle 30°, azimuth angle 200°. Model IGRF-13. 2006. Altitude 500 km.

Baixar (401KB)
7. Fig. 6. LCA maps for azimuthal angles from 0° to 350° in 50° increments. Zenith angle = 30°. 2006. Altitude 500 km.

Baixar (557KB)
8. Fig. 7. (a) Map of relative deviations of geomagnetic clipping stiffness values in 1903 and 2023; (b) time dependence of geomagnetic clipping stiffness (crosses) and magnetic field strength (squares) [Gelvam et al., 2009] in the region of the South Atlantic magnetic anomaly (40° S; 50° W).

Baixar (330KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024