Hygienic aspects of the assessment of combined effect of chemical environmental factors on human health (literature review)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The study of combined effects of chemicals and their assessment is one among urgent issues of hygiene and preventive medicine. Chemicals with variable chemical composition that persist in environmental objects produce simultaneous effects on human health; given that, it is a challenge for researchers to assess combinations of chemicals with variable composition. To identify key areas of development and improve the methodology for addressing it, it is necessary to systematize knowledge as regards studying patterns and features of combined toxicity. This review presents the most significant, in terms of their science intensity and effectiveness, methodological approaches to the assessing effects produced by a mixture of chemicals, which have been developed over the past thirty years. This review focuses on data provided in Russian and foreign scientific literature sources, which are indexed in the search engines eLIBRARY, PubMed, Google Scholar, Web of Science, Scopus and international scientific organizations and devoted to methods for assessing combined effects of chemicals (fifty four publications). In general, existing competency models for assessing combined toxicity of substances have reached a certain level of knowledge. At present, established interactions of substances (antagonism, synergism and its special cases – potentiation and emergence) tend to be more complex than simple summation; risks that cause adverse consequences of combined exposure are calculated; multivariate regression and neural network models are used to improve the quality, adequacy, and objectivity of assessment. However, despite the existing general scientific achievements in this area of ​​research, there is an urgent need for further development of methodological approaches to quantitative assessment of additional risk caused by combined effects. Expanding scientific foundations will allow further improving the methodology for hygienic regulation over levels of chemicals in their various combinations in environmental objects. This is critically important for updating the system of state regulation aimed at minimizing risks and health harm, as a key component of the Russian Federation sovereignty.Contribution: Zaitseva N.V. – study concept and editing; Zemlyanova M.A. – study design, editing; Koldibekova Yu.V., Teterina D.M. – collection and analysis of literary data, writing the text. All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.Conflict of interest. The authors declare no conflict of interest.Acknowledgement. The study had no sponsorship.Received: February 7, 2025 / Revised: March 14, 2025 / Accepted: March 26, 2025 / Published: April 30, 2025

Авторлар туралы

Nina Zaitseva

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: znv@fcrisk.ru

Juliya Koldibekova

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: koldibekova@fcrisk.ru

Marina Zemlyanova

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: zem@fcrisk.ru

Daria Teterina

Federal Scientific Center for Medical and Preventive Health Risk Management Technologies

Email: teterina2000@gmail.com

Әдебиет тізімі

  1. Meek M.E., Boobis A.R., Crofton K.M., Heinemeyer G., Raaij M.V., Vickers C. Risk assessment of combined exposure to multiple chemicals: A WHO/IPCS framework. Regul. Toxicol. Pharmacol. 2011; 60(2 Suppl. 1): S1–14. https://doi.org/10.1016/j.yrtph.2011.03.010
  2. Rodea-Palomares I., González-Pleiter M., Martín-Betancor K., Rosal R., Fernández-Piñas F. Additivity and interactions in ecotoxicity of pollutant mixtures: some patterns, conclusions, and open questions. Toxics. 2015; 3(4): 342–69. https://doi.org/10.3390/toxics3040342
  3. Baecker D. Systems are theory. Cybernetics & Human Knowing. 2017; 24(2): 9–39. https://doi.org/10.2139/ssrn.2512647
  4. Шевляков В.В., Сычик С.И. Особенности комбинированного действия смеси химических аллергенов. Анализ риска здоровью. 2019; (2): 130–7. https://doi.org/10.21668/health.risk/2019.2.15 https://elibrary.ru/jckqvp
  5. Сковронская С.А., Мешков Н.А., Вальцева Е.А., Иванова С.В. Приоритетные факторы риска для здоровья населения крупных промышленных городов. Гигиена и санитария. 2022; 101(4): 459–67. https://doi.org/10.47470/0016-9900-2022-101-4-459-467 https://elibrary.ru/sjqpzc
  6. Altenburger R., Scholz S., Schmitt-Jansen M., Busch W., Escher B.I. Mixture toxicity revisited from a toxicogenomic perspective. Environ. Sci. Technol. 2012; 46(5): 2508–22. https://doi.org/10.1021/es2038036
  7. Mustafa E., Valente M.J., Vinggaard A.M. Complex chemical mixtures: Approaches for assessing adverse human health effects. Curr. Opin. Toxicol. 2023; 34(3): 100404. https://doi.org/10.1016/j.cotox.2023.100404
  8. Мирзакаримова М.А. Сравнительная гигиеническая оценка комбинированного действия сложных смесей химических загрязнений атмосферного воздуха. Гигиена и санитария. 2017; 96(6): 528–31. https://elibrary.ru/zapebt
  9. Lin X., Gu Y., Zhou Q., Mao G., Zou B., Zhao J. Combined toxicity of heavy metal mixtures in liver cells. J. Appl. Toxicol. 2016; 36(9): 1163–72. https://doi.org/10.1002/jat.3283
  10. Жолдакова З.И., Харчевникова Н.В., Мамонов Р.А., Синицына О.О. Методы оценки комбинированного действия веществ. Гигиена и санитария. 2012; 91(2): 86–9. https://elibrary.ru/pffhgl
  11. Минигалиева И.А. Некоторые закономерности комбинированной токсичности металлооксидных наночастиц. Токсикологический вестник. 2016; (6): 18–24. https://elibrary.ru/xcsjqb
  12. Ракитский В.Н., Авалиани С.Л., Новиков С.М., Шашина Т.А., Додина Н.С., Кислицин В.А. Анализ риска здоровью при воздействии атмосферных загрязнений как составная часть стратегии уменьшения глобальной эпидемии неинфекционных заболеваний. Анализ риска здоровью. 2019; (4): 30–6. https://doi.org/10.21668/health.risk/2019.4.03 https://elibrary.ru/filvrk
  13. Прозоровский В.Б. Статистическая обработка результатов фармакологических исследований. Психофармакология и биологическая наркология. 2007; 7(3): 2090–120. https://elibrary.ru/jvwcbj
  14. Dietrich C., Wang M., Ebeling M., Gladbach A. An efficient and pragmatic approach for regulatory aquatic mixture risk assessment of pesticides. Env. Sci. Eur. 2022; 34(1): 16. https://doi.org/10.1186/s12302-022-00594-3
  15. Кацнельсон Б.А., Вараксин А.Н., Панов В.Г., Привалова Л.И., Минигалиева И.А., Киреева Е.П. Экспериментальное моделирование и математическое описание хронической комбинированной токсичности как основа анализа многофакторных химических рисков для здоровья. Токсикологический вестник. 2015; (5): 37–45. https://elibrary.ru/xqjlbr
  16. Белецкая Э.Н., Онул Н.М. Комбинированное действие свинца и цинка на эмбриональное развитие лабораторных крыс. Гигиена и санитария. 2014; 93(6): 55–9. https://elibrary.ru/tfanxj
  17. Sturla S.J., Boobis A.R., FitzGerald R.E., Hoeng J., Kavlock R.J., Schirmer K., et al. Systems toxicology: from basic research to risk assessment. Chem. Res. Toxicol. 2014; 27(3): 314–29.
  18. Ducrot V., Billoir E., Péry A.R., Garric J., Charles S. From individual to population level effects of toxicants in the tubicifid Branchiura sowerbyi using threshold effect models in a Bayesian framework. Environ. Sci. Technol. 2010; 44(9): 3566–71. https://doi.org/10.1021/es903860w
  19. Klaminder J., Hellström G., Fahlman J., Jonsson M., Fick J., Lagesson A., et al. Drug-Induced Behavioral Changes: Using Laboratory Observations to Predict Field Observations. Front. Environ. Sci. 2016; 4: 81. https://doi.org/10.3389/fenvs.2016.00081
  20. Богданов Р.В., Бондаренко Л.М., Василькевич В.М., Земцова В.О., Евтерева А.А., Занкевич В.А. Основные результаты экспериментального изучения комбинированного действия стирола и диоктилфталата. Здоровье и окружающая среда. 2022; (32): 146–53. https://elibrary.ru/uqefvr
  21. Минигалиева И.А., Кацнельсон Б.А., Гурвич В.Б., Привалова Л.И., Панов В.Г., Вараксин А.Н. и др. О соотношении между общепринятой практикой оценки риска для здоровья при полиметаллических экспозициях и теорией комбинированной токсичности. Токсикологический вестник. 2017; (4): 13–8. https://doi.org/10.36946/0869-7922-2017-4-13-18 https://elibrary.ru/zdpedt
  22. Van Der Ven L.T.M., Van Ommeren P., Zwart E.P., Gremmer E.R., Hodemaekers H.M., Heusinkveld H.J., et al. Dose addition in the induction of craniofacial malformations in zebrafish embryos exposed to a complex mixture of food-relevant chemicals with dissimilar modes of action. Environ. Health Perspect. 2022; 130(4): 47003. https://doi.org/10.1289/EHP9888
  23. Jeong H., Byeon E., Kim D.H., Maszczyk P., Lee J.S. Heavy metals and metalloid in aquatic invertebrates: A review of single/mixed forms, combination with other pollutants, and environmental factors. Mar. Pollut. Bull. 2023; 191: 114959. https://doi.org/10.1016/j.marpolbul.2023.114959
  24. Katsnelson B.A., Panov V.G., Minigaliyeva I.A., Varaksin A.N., Privalova L.I., Slyshkina T.V., et al. Further development of the theory and mathematical description of combined toxicity: An approach to classifying types of action of three-factorial combinations (a case study of manganese-chromium-nickel subchronic intoxication). Toxicology. 2015; 334: 33–44. https://doi.org/10.1016/j.tox.2015.05.005
  25. Caporale N., Leemans M., Birgersson L., Germain P.L., Cheroni C., Borbély G., et al. From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures. Science. 2022; 375(6582): eabe8244. https://doi.org/10.1126/science.abe8244
  26. Ma Y., Taxvig C., Rodríguez-Carrillo A., Mustieles V., Reiber L., Kiesow A., et al. Human risk associated with exposure to mixtures of antiandrogenic chemicals evaluated using in vitro hazard and human biomonitoring data. Environ. Int. 2023; 173: 107815. https://doi.org/10.1016/j.envint.2023.107815
  27. Luijten M., Vlaanderen J., Kortenkamp A., Antignac J.P., Barouki R., Bil W., et al. Mixture risk assessment and human biomonitoring: Lessons learnt from HBM4EU. Int. J. Hyg. Environ. Health. 2023; 249: 114135. https://doi.org/10.1016/j.ijheh.2023.114135
  28. Gilles L., Govarts E., Rodriguez Martin L., Andersson A.M., Appenzeller B.M.R., Barbone F., et al. Harmonization of human biomonitoring studies in europe: characteristics of the HBM4EU-aligned studies participants. Int. J. Environ. Res. Public Health. 2022; 19(11): 6787. https://doi.org/10.3390/ijerph19116787
  29. Price P.S., Dhein E., Hamer M., Han X., Heneweer M., Junghans M., et al. A decision tree for assessing effects from exposures to multiple substances. Environ. Sci. Eur. 2012; 24(1). https://doi.org/10.1186/2190-4715-24-26
  30. Kortenkamp A., Scholze M., Ermler S., Priskorn L., Jørgensen N., Andersson A.M., et al. Combined exposures to bisphenols, polychlorinated dioxins, paracetamol, and phthalates as drivers of deteriorating semen quality. Environ. Int. 2022; 165: 107322. https://doi.org/10.1016/j.envint.2022.107322
  31. Huber C., Nijssen R., Mol H., Philippe Antignac J., Krauss M., Brack W., et al. A large scale multi-laboratory suspect screening of pesticide metabolites in human biomonitoring: From tentative annotations to verified occurrences. Environ. Int. 2022; 168: 107452. https://doi.org/10.1016/j.envint.2022.107452
  32. Ougier E., Ganzleben C., Lecoq P., Bessems J., David M., Schoeters G., et al. Chemical prioritisation strategy in the European Human Biomonitoring Initiative (HBM4EU) – Development and results. Int. J. Hyg. Environ. Health. 2021; 236: 113778. https://doi.org/10.1016/j.ijheh.2021.113778
  33. Рахманин Ю.А., Малышева А.Г. Концепция развития государственной системы химико-аналитического мониторинга окружающей среды. Гигиена и санитария. 2013; 92(6): 4–8. https://elibrary.ru/ruhbtp
  34. Hopf N.B., Rousselle C., Poddalgoda D., Lamkarkach F., Bessems J., Schmid K., et al. A harmonized occupational biomonitoring approach. Environ. Int. 2024; 191: 108990. https://doi.org/10.1016/j.envint.2024.108990
  35. Gillis N., Plemmons R.J. Sparse nonnegative matrix underapproximation and its application to hyperspectral image analysis. Linear Algebra Appl. 2013; 438(10): 3991–4007. https://doi.org/10.1016/j.laa.2012.04.033
  36. Schwedler G., Conrad A., Rucic E., Koch H.M., Leng G., Schulz C., et al. Hexamoll® DINCH and DPHP metabolites in urine of children and adolescents in Germany. Human biomonitoring results of the German Environmental Survey GerES V, 2014-2017. Int. J. Hyg. Environ. Health. 2020; 229: 113397. https://doi.org/10.1016/j.ijheh.2019.09.004
  37. Зайцева Н.В., Землянова М.А., Чащин В.П., Гудков А.Б. Научные принципы применения биомаркеров в медико-экологических исследованиях. Экология человека. 2019; (9): 4–14. https://doi.org/10.33396/1728-0869-2019-9-4-14 https://elibrary.ru/wswnqj
  38. Ladeira C. Environmental and occupational exposure to chemical agents and health challenges I – what message can bring to regulatory science? Toxics. 2024; 12(11): 778. https://doi.org/10.3390/toxics12110778
  39. Rodríguez-Carrillo A., Rosenmai A.K., Mustieles V., Couderq S., Fini J.B., Vela-Soria F., et al. Assessment of chemical mixtures using biomarkers of combined biological activity: A screening study in human placentas. Reprod. Toxicol. 2021; 100: 143–54. https://doi.org/10.1016/j.reprotox.2021.01.002
  40. Шевчук Л.М., Толкачёва Н.А., Пшегрода А.Е., Семёнов И.П. Гигиеническая оценка влияния на здоровье населения загрязнения атмосферного воздуха с учетом комбинированного действия химических веществ в зоне расположения предприятия химической промышленности. Анализ риска здоровью. 2015; (3): 40–6. https://elibrary.ru/ujjkab
  41. Ågerstrand M., Beronius A. Weight of evidence evaluation and systematic review in EU chemical risk assessment: Foundation is laid but guidance is needed. Environ. Int. 2016; 92–93: 590–6. https://doi.org/10.1016/j.envint.2015.10.008
  42. Babin É., Cano-Sancho G., Vigneau E., Antignac J.P. A review of statistical strategies to integrate biomarkers of chemical exposure with biomarkers of effect applied in omic-scale environmental epidemiology. Environ. Pollut. 2023; 330: 121741. https://doi.org/10.1016/j.envpol.2023.121741
  43. Taguri M., Featherstone J., Cheng J. Causal mediation analysis with multiple causally non-ordered mediators. Stat. Methods. Med. Res. 2018; 27(1): 3–19. https://doi.org/10.1177/0962280215615899
  44. Цинкер М.Ю., Кирьянов Д.А., Клейн С.В. Статистическое моделирование для оценки влияния факторов среды обитания на индикаторные показатели здоровья населения Российской Федерации. Здоровье населения и среда обитания. 2013; (11): 10–3. https://elibrary.ru/rpjuwb
  45. Hastie T., Tibshirani R., Friedman J. Random forests. In: The Elements of Statistical Learning. New York: Springer; 2009: 587–604.
  46. Zare Jeddi M., Hopf N.B., Viegas S., Price A.B., Paini A., van Thriel C., et al. Towards a systematic use of effect biomarkers in population and occupational biomonitoring. Environ. Int. 2021; 146: 106257. https://doi.org/10.1016/j.envint.2020.106257
  47. Louro H., Heinälä M., Bessems J., Buekers J., Vermeire T., Woutersen M., et al. Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future. Int. J. Hyg. Environ. Health. 2019; 222(5): 727–37. https://doi.org/10.1016/j.ijheh.2019.05.009
  48. Escher B.I., Hackermüller J., Polte T., Scholz S., Aigner A., Altenburger R., et al. From the exposome to mechanistic understanding of chemical-induced adverse effects. Environ. Int. 2017; 99: 97–106. https://doi.org/10.1016/j.envint.2016.11.029
  49. Cassee F.R., Muijser H., Duistermaat E., Freijer J.J., Geerse K.B., Marijnissen J.C., et al. Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model. Arch. Toxicol. 2002; 76(5–6): 277–86. https://doi.org/10.1007/s00204-002-0344-8
  50. Aboumerhi K., Güemes A., Liu H., Tenore F., Etienne-Cummings R. Neuromorphic applications in medicine. J. Neural. Eng. 2023; 20(4): 041004. https://doi.org/10.1088/1741-2552/aceca3
  51. Pan Yu. Different types of neural networks and applications: evidence from feedforward, convolutional and recurrent neural networks. In: Highlights in Science Engineering and Technology. 2024; 85: 247–55. https://doi.org/10.54097/6rn1wd81
  52. Ladeira C. The use of effect biomarkers in chemical mixtures risk assessment – are they still important? Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2024; 896: 503768. https://doi.org/10.1016/j.mrgentox.2024.503768
  53. Землянова М.А., Зайцева Н.В., Кольдибекова Ю.В., Пескова Е.В., Булатова Н.И., Степанков М.С. Маркеры аэрогенной комбинированной экспозиции металлоксидными соединениями и трансформированного протеомного профиля плазмы крови у детей. Анализ риска здоровью. 2023; (1): 137–46. https://doi.org/10.21668/health.risk/2023.1.13 https://elibrary.ru/lnzluh
  54. Землянова М.А., Зайцева Н.В., Кольдибекова Ю.В., Пережогин А.Н., Степанков М.С., Булатова Н.И. Выявление омик-маркеров негативных эффектов, ассоциированных с аэрогенным комбинированным воздействием соединений алюминия и фтора. Анализ риска здоровью. 2022; (1): 123–32. https://doi.org/10.21668/health.risk/2022.1.13 https://elibrary.ru/timblr

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© , 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.