Study of the Thermal Stability of Heavy Oil Resins and Asphaltenes by Thermogravimetry
- 作者: Pevneva G.S.1, Voronetskaya N.G.1, Kopytov M.A.1
-
隶属关系:
- Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences
- 期: 编号 2-3 (2023)
- 页面: 71-77
- 栏目: Articles
- URL: https://gynecology.orscience.ru/0023-1177/article/view/661896
- DOI: https://doi.org/10.31857/S0023117723020111
- EDN: https://elibrary.ru/BPOFJR
- ID: 661896
如何引用文章
详细
The thermal stability of resins and asphaltenes of naphthenic and methane heavy oils was studied by thermogravimetry. Based on the data of physicochemical methods of analysis, it was shown that the resins and asphaltenes of the test oils had significant differences in molecular weight, elemental composition, and distribution of carbon atoms in structural fragments. Thermogravimetric analysis was performed by heating the samples from 25 to 650°С at a rate of 10 K/min in an atmosphere of argon. It was shown that the maximum rate of weight loss of naphthenic oil resins and asphaltenes occurred at lower temperatures, as compared to similar components of methane oil. The thermal stability of resins and asphaltenes depended on the composition and structural organization of these components due to their formation from oil dispersed systems of various chemical types. It was established that the thermal stability of resins and asphaltenes of methane oil was higher than the thermal stability of similar components of naphthenic oil.
作者简介
G. Pevneva
Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences
Email: pevneva@ipc.tsc.ru
Tomsk, 634055 Russia
N. Voronetskaya
Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences
Email: voronetskaya@ipc.tsc.ru
Tomsk, 634055 Russia
M. Kopytov
Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: kma@ipc.tsc.ru
Tomsk, 634055 Russia
参考
- Trejo F., Rana M.S., Ancheyta J. // Catalysis Today. 2010. V. 150. P. 272. https://doi.org/10.1016/j.cattod.2009.07.091
- Varfolomeev M.A., Galukhin A., Nurgaliev D.K., Kok M.V. // Fuel. 2016. № 186. P. 122. https://doi.org/10.1016/j.fuel.2016.08.042
- Корнеев Д.С., Певнева Г.С., Воронецкая Н.Г. // Нефтехимия. 2021. Т. 61. № 2. С. 172. [Korneev D.S., Pevneva G. S., Voronetskaya N.G. // Petroleum Chemistry. 2021. vol. 61. No. 2. P. 152. https://doi.org/10.1134/S0965544121020158]https://doi.org/10.31857/S0028242121020052
- Alcazar-Vara L.A., Buenrostro-Gonzalez E. // J. Thermal Analysis and Calorimetry. 2012. V. 107. № 3. P. 1321. https://doi.org/10.1007/s10973-011-1592-8
- Поконова Ю.В. Химия высокомолекулярных соединений нефти. Л.: Изд-во Ленингр. ун-та, 1980. 172 с.
- Junhui Hao, Yuanjun Che, Yuanyu Tian, Dawei Li, Jinhong Zhang, and Yingyun Qiao // Energy Fuels. 2017. V. 31. P. 1295. https://doi.org/10.1021/acs.energyfuels.6b02598
- Певнева Г.С., Воронецкая Н.Г., Копытов М.А. // Химия в интересах устойчивого развития. 2022. Т. 30. № 4 С. 406. [Pevneva G.S., Voronetskaya N.G., Kopytov M.A. // Chemistry for Sustainable Development. 2022. vol. 30. P. 395. https://doi.org/10.15372/CSD2022396]https://doi.org/10.15372/KhUR2022396
- Patrakov Yu.F., Kamyanov V.F., Fedyaeva O.N. // Fuel. 2005. V. 84. № 2–3. C. 189. https://doi.org/10.1016/j.fuel.2004.08.021
- Иванова Л.В., Сафиева Р.З., Кошелев В.Н. // Вестн. Башкир. ун-та. 2008. Т. 13. № 4. С. 869.
- Alvarez E., Marroquín G., Trejo F., Centeno G., Ancheyta J., Díaz J.A.I. // Fuel. 2011. V. 90. P. 3602. https://doi.org/10.1016/j.fuel.2010.11.046
补充文件
