Electric arc synthesis of titanium carbide using carbon obtained from thermal conversion of waste from the power industry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work presents for the first time the results of obtaining titanium carbide using a vacuum-free electric arc method using various types of biocarbon obtained by classical pyrolysis of biomass waste, such as tangerine peel, pomelo peel, banana peel, pine nut shells, walnut shells. Analysis of X-ray diffraction patterns of the synthesized materials showed the repeatability of the experiment with the receipt of diffraction maxima indicating the formation of a cubic structure of titanium carbide. An analysis of the thermal oxidation of the resulting powders showed that up to a thousand degrees the process proceeds quite slowly, but with increasing temperature the oxidation rate increases significantly. It has been established that during thermal heating in an oxidizing environment, the mass of the studied titanium carbide powders obtained using various types of carbon increases, which is confirmed by thermogravimetric analysis.

Full Text

Restricted Access

About the authors

A. A. Svinukhova

National Research Tomsk Polytechnic Universityl

Author for correspondence.
Email: aag109@tpu.ru

Инженерная школа энергетики

Russian Federation, Tomsk, 634050

S. A. Yankovsky

National Research Tomsk Polytechnic Universityl

Email: jankovsky@tpu.ru

Инженерная школа энергетики

Russian Federation, Tomsk, 634050

A. D. Misyukova

National Research Tomsk Polytechnic Universityl

Email: adm14@tpu.ru

Инженерная школа энергетики

Russian Federation, Tomsk, 634050

A. Ya. Pak

National Research Tomsk Polytechnic Universityl

Email: ayapak@tpu.ru

Инженерная школа энергетики

Russian Federation, Tomsk, 634050

References

  1. Gusev A.I. // Russian Chemical Reviews. 2020. V. 71. № 6. P. 439–463.https://doi.org/ 10.1070/rc2002v071n06abeh000721
  2. Syamsai R., Kollu P., Kwan Jeong S., and Nirmala Grace A. // Ceram. Int. 2017. V. 43. № 16. P. 13119–13126.https://doi.org/10.1016/J.CERAMINT.2017.07.003
  3. Luo Y., Yang C., Tian Y. et al. // J. Power Sources. 2020. V. 450. P. 227694.https://doi.org/10.1016/J.JPOWSOUR.2019.227694
  4. Dong Q., Huang M., Guo C., Yu G., and Wu M. // Int. J. Hydrogen Energy. 2017. V. 42. № 5. P. 3206–3214. https://doi.org/10.1016/J.IJHYDENE.2016.09.217
  5. Ghidiu M., Lukatskaya M.R., Zhao M.-Q., Gogotsi Y., and Barsoum M.W. // Nature. 2014. V. 516.https://doi.org/10.1038/nature13970
  6. Lin S.Y. and Zhang X. // J. Power Sources. 2015. V. 294. P. 354–359.https://doi.org/10.1016/J.JPOWSOUR.2015.06.082
  7. Ghosh S., Ranjan P., Kumaar A., Sarathi R., and Ramaprabhu S.// J Alloys Compd. 2019, vol. 794, p. 645–653.https://doi.org/10.1016/J.JALLCOM.2019.04.299
  8. Kunkel C., Viñ F., Ramírez P.J., Rodriguez J.A., and Illas F. // J. Phys. Chem. 2018. V. 123. P. 7567–7576.https://doi.org/10.1021/acs.jpcc.7b12227
  9. Amutio M., Lopez G., Aguado R., Bilbao J., and Olazar M. // Energy and Fuels. 2012. V. 26. № 2. P. 1353–1362. https://doi.org/10.1021/EF201662X
  10. Zhang Z., Li Yi., Luo L., et al. // Renew Energy. 2023. V. 202. P. 154–171.https://doi.org/10.1016/J.RENENE.2022.11.072
  11. Vuppaladadiyam A., Vuppaladadiyam S., Awasthi A. et al. // Bioresour Technol. 2022. V. 364.https://doi.org/10.1016/J.BIORTECH.2022.128087
  12. Blesa M.J., Miranda J.L., Moliner R., et al. // J. Anal. Appl. Pyrol. 2003. V. 70. № 2. P. 665–677.https://doi.org/10.1016/s0165-2370(03)00047-0
  13. Hilaluddin S., Mondal Sh. Rakhshit et al. // Bioresour Technol. 2023. V. 376.https://doi.org/ 10.1016/J.BIORTECH.2023.128910
  14. Tintner J., Preimesberger Ch., Pfeifer Ch. et al. // Ind. Eng. Chem. Res. 2018. V. 57. № 46. P. 15613–15619. https://doi.org/10.1021/acs.iecr.8b04094
  15. Zhang L., Li S., Li K., and Zhu X. // Energy Convers Manag. 2018, V. 166. P. 260–267.https://doi.org/ 10.1016/J.ENCONMAN.2018.04.002
  16. Singh S. and Srivastava S. // Procedia Comput. Sci. 2020. V. 173. P. 272–280.https://doi.org/ 10.1016/J.PROCS.2020.06.032
  17. Cheng J., Hu S.C., Sun G.T., Geng Z.C., and Zhu M.Q. // Ind. Crops Prod. 2021. V. 170. P. 113690.https://doi.org/10.1016/J.INDCROP.2021.113690
  18. Adelawon B.O., Latinwo G.K., Eboibi B.E., Agbede O.O., and Agarry S.E. // Chem. Eng. Comm. 2021. V. 209, № 9. P. 1246–1276.https://doi.org/10.1080/00986445.2021.1957851
  19. Yu S., Wang L., Li Q., Zhang Y., and Zhou H.// Materials Today Sustainability. 2022. V. 19. P. 100209.https://doi.org/ 10.1016/J.MTSUST.2022.100209
  20. Wang S., Dai G., Yang H., and Luo Z.// Prog. Energy Combust. Sci. 2017. V. 62. P. 33–86.https://doi.org/10.1016/J.PECS.2017.05.004
  21. Demirbaş A. and Arin G. // Enerdy Sources. 2010. V. 24. № 5. Р. 471–482.https://doi.org/ 10.1080/00908310252889979
  22. Cao Z., Hu Sh., Yu J., et al. // J. Environ. Chem. Eng. 2022. V. 10. № 5.https://doi.org/10.1016/J.JECE.2022.108245
  23. Sheldon R.A. // Green Chemistry. 2014. V. 16. № 3. Р. 950–963.https://doi.org/10.1039/C3GC41935E.
  24. Rosas J.M., Berenguer R., Valero-Romero M.J., Rodríguez-Mirasol J., Cordero T.// Front Mater. 2014. V. 1. https://doi.org/10.3389/fmats.2014.00029
  25. Rasaki S.A., Zhang B., Anbalgam K., Thomas T., and Yang M.// Progress in Solid State Chemistry. 2018. V. 50. P. 1–15.https://doi.org/ 10.1016/J.PROGSOLIDSTCHEM.2018.05.001
  26. Cho D., Hoon Park J., Jeong Y., and Lak Joo Y. // Ceram Int. 2015. V. 41. № 9. Р. 10974–10979.https://doi.org/ 10.1016/J.CERAMINT.2015.05.041
  27. De Bonis A., Santagata A., Galasso A., Laurita A., and Teghil R. // J. Colloid Interface Sci. 2017. V. 489. P. 76–84. https://doi.org/10.1016/j.jcis.2016.08.078
  28. Li J., Ye J. // Int. J. Refract Met. Hard. Mater. 2023. V. 115. № 106215.https://doi.org/10.1016/j.ijrmhm.2023.106215
  29. Zhang C., Loganathan A., Boesl B., Agarwal A. // Coatings. 2017. V. 7.https://doi.org/10.3390/coatings7080111

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Results of scanning electron microscopy of carbon residue obtained by thermal conversion of the initial biomass: (a) carbon from mandarin peel; (b) carbon from pomelo peel; (c) carbon from banana peel; (d) carbon from cedar nut shell; (e) carbon from walnut shell.

Download (1MB)
3. Fig. 2. TG (a), DSC (b), DTG (c) data for the oxidation process of the studied TiC samples obtained with the addition of carbon from biomass (medium – air, 100 ml/min), heating rate of 10 ° C/min, temperature range from 100 to 1000 °C).

Download (356KB)
4. Fig. 3. Results of X-ray diffractometry of titanium carbide synthesis products.

Download (130KB)
5. Fig. 4. Typical images of high-speed video recording of the oxidation and combustion process of the studied titanium carbide samples. Gorenje

Download (380KB)

Copyright (c) 2024 Russian Academy of Sciences