CO2-methane conversion

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this study, a plasma-chemical method of methane conversion with CO₂ was considered as a potential means of producing hydrogen while simultaneously reducing carbon dioxide emissions. In order to achieve this, a series of experiments were conducted in order to evaluate the composition of the resulting fusion gas and the arc parameters. During the course of this work, it was found that modifying the volume of hydrogen present during the reaction resulted in an increase in the average mass temperature, which in turn led to an increase in the electrical conductivity of the arc. This finding suggests that the electrical parameters of the arc can be employed to estimate the quantity of hydrogen present in the resulting fusion gas.

Texto integral

Acesso é fechado

Sobre autores

M. Obrivalin

Institute for Electrophysics and Electrical Power, Russian Academy of Sciences; Saint-Petersburg State Technological Institute (Technical University)

Autor responsável pela correspondência
Email: maxim.obryvalin2@gmail.com
Rússia, St. Petersburg; St. Petersburg

D. Subbotin

Institute for Electrophysics and Electrical Power, Russian Academy of Sciences; Saint-Petersburg State Technological Institute (Technical University)

Email: maxim.obryvalin2@gmail.com
Rússia, St. Petersburg; St. Petersburg

S. Popov

Institute for Electrophysics and Electrical Power, Russian Academy of Sciences

Email: maxim.obryvalin2@gmail.com
Rússia, St. Petersburg

Y. Denisov

Institute for Electrophysics and Electrical Power, Russian Academy of Sciences; Saint-Petersburg State Technological Institute (Technical University)

Email: maxim.obryvalin2@gmail.com
Rússia, St. Petersburg; St. Petersburg

V. Popov

Institute for Electrophysics and Electrical Power, Russian Academy of Sciences

Email: maxim.obryvalin2@gmail.com
Rússia, St. Petersburg

Bibliografia

  1. IEA (2023), Global Hydrogen Review 2023, IEA, Paris https://www.iea.org/reports/global-hydrogen-review-2023, Licence: CC BY 4.0
  2. Veras T.S., Mozer T.S., Santos D., Cesar A.S // International Journal of Hydrogen Energy. 2017. V. 42. №. 4 P. 2018–2033.
  3. Nikolaidis P., Poullikkas A. // Renewable and Sustainable Energy Reviews. 2017. V. 67. P. 597–611.
  4. MØller K.T., Jensen T.R., Akiba E., Li H-W. // Progress in Natural Science: Materials International. 2017. V. 27. № 1. P. 34–40
  5. Dincer I., Acar C. // International journal of hydrogen energy. 2015. V. 40. No. 34. P. 11094–11111.
  6. Rutberg P.G., Nakonechny G.V., Pavlov A.V., Popov S.D., Serba E.O., Surov A.V. // Journal of Physics D: Applied Physics. 2015. V. 48. I. 24. P. 245204
  7. Rutberg P.G., Kuznetsov V.A., Serba E.O, Popov S.D. // Applied Energy. 2013. V. 108. P. 505–514.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diagram of the experimental setup. It should be noted that water vapor was not used in this experiment.

Baixar (197KB)
3. Fig. 2. Diagram of the structure of an alternating current plasma torch. 1 – electrodes, 2 – channels for the arc, 3 – near–electrode space, 4 - gas source in the electrode region, 5 – gas source in the arc zone.

Baixar (88KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024