Модель потоков высокоэнергичных электронов на орбитах ГЛОНАСС
- Autores: Шустов П.И.1, Петрукович А.А.1, Артемьев А.В.1
-
Afiliações:
- Институт космических исследований РАН
- Edição: Volume 62, Nº 3 (2024)
- Páginas: 239-248
- Seção: Articles
- URL: https://gynecology.orscience.ru/0023-4206/article/view/672386
- DOI: https://doi.org/10.31857/S0023420624030019
- EDN: https://elibrary.ru/JKPVMJ
- ID: 672386
Citar
Resumo
Моделирование динамики потоков энергичных электронов во внутренней магнитосфере Земли представляет собой актуальную задачу изучения “космической погоды”, учитывая роль, которую энергичные электроны играют в сбоях аппаратуры космических аппаратов. В настоящей работе исследуется возможность построения эмпирической модели потоков электронов на средневысотной круговой орбите спутников ГЛОНАСС. В качестве основной базы данных потоков использованы измерения спутниковой миссии Radiation Belt Storm Probes за 2012–2019 гг. Околоэкваториальные измерения Radiation Belt Storm Probes спроецированы на высоты орбит спутников ГЛОНАСС с использованием эмпирической модели магнитного поля. Главной особенностью представляемой модели потоков энергичных электронов является тот факт, что вместо среднего потока модель восстанавливает функцию распределения вероятностей амплитуд потоков в зависимости от энергии электронов и геомагнитных условий.
Texto integral

Sobre autores
П. Шустов
Институт космических исследований РАН
Autor responsável pela correspondência
Email: p.shustov@gmail.com
Rússia, Москва
А. Петрукович
Институт космических исследований РАН
Email: p.shustov@gmail.com
Rússia, Москва
А. Артемьев
Институт космических исследований РАН
Email: p.shustov@gmail.com
Rússia, Москва
Bibliografia
- Shprits Y. Y., Elkington S. R., Meredith N. P. et al. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: Radial transport // J. Atmospheric and Solar-Terrestrial Physics. 2008. V. 70. P. 1679–1693.
- Shprits Y. Y., Subbotin D. A., Meredith N. P. et al. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss // J. Atmospheric and Solar-Terrestrial Physics. 2008. V. 70. P. 1694–1713.
- Millan R.M., Thorne R. M. Review of radiation belt relativistic electron losses // J. Atmospheric and Solar-Terrestrial Physics. 2007. V. 69. P. 362–377.
- Turner D.L., Shprits Y., Hartinger M. et al. Explaining sudden losses of outer radiation belt electrons during geomagnetic storms // Nature Physics. 2012. V. 8. P. 208–212. https://doi.org/10.1038/nphys2185.
- Sorathia K.A., Merkin V. G., Ukhorskiy A. Y. et al. Energetic particle loss through the magnetopause: A combined global MHD and test-particle study // J. Geophysical Research: Space Physics. 2017. V. 122. P. 9329–9343. doi: 10.1002/2017ja024268.
- Li W., Hudson M. K. Earth’s Van Allen Radiation Belts: From Discovery to the Van Allen Probes Era // J. Geophysical Research (Space Physics). 2019. V. 124 P. 8319–8351. doi: 10.1029/2018JA025940.
- Thorne R. M., Bortnik J., Li W. et al. Wave–Particle Interactions in the Earth’s Magnetosphere // Magnetospheres in the Solar System. American Geophysical Union (AGU), 2021. P. 93–108. doi: 10.1002/9781119815624.ch6.
- Sorathia K. A., Ukhorskiy A. Y., Merkin V. G. et al. Modeling the Depletion and Recovery of the Outer Radiation Belt During a Geomagnetic Storm: Combined MHD and Test Particle Simulations // J. Geophysical Research (Space Physics). 2018. V. 123. P. 5590–5609. doi: 10.1029/2018JA025506.
- Hudson M.K., Kress B. T., Mueller H.-R. et al. Relationship of the Van Allen radiation belts to solar wind drivers // J. Atmospheric and Solar-Terrestrial Physics. 2008. V. 70. P. 708–729.
- Hudson M. K., Paral J., Kress B. T. et al. Modeling CME-shock-driven storms in 2012–2013: MHD test particle simulations // J. Geophysical Research. 2015. V. 120. P. 1168–1181. doi: 10.1002/2014JA020833
- Thorne R.M., Li W., Ni B. et al. Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus // Nature. 2013. V. 504. P. 411–414.
- Ma Q., Li W., Bortnik J. et al. Quantitative Evaluation of Radial Diffusion and Local Acceleration Processes During GEM Challenge Events // J. Geophysical Research (Space Physics). 2018. V. 123. P. 1938–1952. doi: 10.1002/2017JA025114.
- Allison H.J., Shprits Y. Y., Zhelavskaya I. S. et al. Gyroresonant wave-particle interactions with chorus waves during extreme depletions of plasma density in the Van Allen radiation belts // Science Advances. 2021. V. 7. Art. ID. eabc0380. doi: 10.1126/sciadv.abc0380.
- Drozdov A. Y., Shprits Y. Y., Orlova K. G. et al. Energetic, relativistic, and ultrarelativistic electrons: Comparison of long-term VERB code simulations with Van Allen Probes measurements // J. Geophysical Research. 2015. V. 120. P. 3574–3587. DOI: 10.1002/ 2014JA020637.
- Mann I. R., Ozeke L. G., Murphy K. R. et al. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt // Nature Physics. 2016. V. 12. P. 978–983. https://doi.org/10.1038/nphys3799.
- Meredith N. P., Horne R. B., Sicard-Piet A. et al. Global model of lower band and upper band chorus from multiple satellite observations // J. Geophysical Research. 2012. V. 117. Art. ID. 10225.
- Meredith N. P., Horne R. B., Kersten T. et al. Global morphology and spectral properties of EMIC waves derived from CRRES observations // J. Geophysical Research. 2014. V. 119. P. 5328–5342.
- Agapitov O. V., Artemyev A., Krasnoselskikh V. et al. Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF-SA measurements // J. Geophysical Research. 2013. V. 118. P. 3407–3420.
- Agapitov O.V., Artemyev A. V., Mourenas D. et al. Empirical model of lower band chorus wave distribution in the outer radiation belt // J. Geophysical Research. 2015. V. 120. P. 425–442. https://doi.org/10.1002/2015JA021829.
- Agapitov O. V., Mourenas D., Artemyev A. V. et al. Synthetic Empirical Chorus Wave Model from Combined Van Allen Probes and Cluster Statistics // J. Geophysical Research (Space Physics). 2018. V. 123. P. 297–314. doi: 10.1002/2017JA024843.
- Wang D., Shprits Y. Y., Zhelavskaya I. S. et al. Analytical Chorus Wave Model Derived from Van Allen Probe Observations // J. Geophysical Research (Space Physics). 2019. V. 124. P. 1063–1084. doi: 10.1029/2018JA026183.
- Zhang X.-J., Li W., Thorne R. M. et al. Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes // Geophysical Research Letters. 2016. V. 43. P. 348–355. doi: 10.1002/2016GL071158.
- Forsyth C., Watt C. E.J., Mooney M. K. et al. Forecasting GOES15 >2 MeV Electron Fluxes From Solar Wind Data and Geomagnetic Indices // Space Weather. 2020. V. 18. Art. ID. e2019SW002416. doi: 10.1029/2019SW002416.
- Mourenas D., Artemyev A. V., Zhang X.-J. Impact of Significant Time-Integrated Geomagnetic Activity on 2-MeV Electron Flux // J. Geophysical Research: Space Physics. 2019. V. 124. P. 4445–4461. doi: 10.1029/2019JA026659.
- Chen Y., Reeves G. D., Fu X. et al. PreMevE: New Predictive Model for Megaelectron-Volt Electrons inside Earth’s Outer Radiation Belt // Space Weather. 2019. V. 17. P. 438–454. https://doi.org/10.1029/2018SW002095.
- Balikhin M. A., Rodriguez J. V., Boynton R. J. et al. Comparative analysis of NOAA REFM and SNB³GEO tools for the forecast of the fluxes of high-energy electrons at GEO // Space Weather. 2016. V. 14. P. 22–31. doi: 10.1002/2015SW001303.
- Horne R. B., Glauert S. A., Meredith N. P. et al. Space weather impacts on satellites and forecasting the Earth’s electron radiation belts with SPACECAST // Space Weather. 2013. V. 11. P. 169–186.
- Iucci N., Levitin A. E., Belov A. V. et al. Space weather conditions and spacecraft anomalies in different orbits // Space Weather. 2005. V. 3. Art. ID1001. doi: 10.1029/2003SW000056.
- Horne R. B., Phillips M. W., Glauert S. A. et al. Realistic Worst Case for a Severe Space Weather Event Driven by a Fast Solar Wind Stream // Space Weather. 2018. V. 16. P. 1202–1215. doi: 10.1029/2018SW001948.
- Green J. C., Likar J., Shprits Y. Impact of space weather on the satellite industry // Space Weather. 2017. V. 15. P. 804–818. doi: 10.1002/2017SW001646.
- Welling D. T. The long-term effects of space weather on satellite operations // Annales Geophysicae. 2010. V. 28. P. 1361–1367.
- Xapsos M. A., O’Neill P.M., O’Brien T. P. Near-Earth Space Radiation Models // IEEE Trans. Nuclear Science. 2013. V. 60. P. 1691–1705.
- Cochran D. J., Buchner S. P., Chen D. et al. Total Ionizing Dose and Displacement Damage Compendium of Candidate Spacecraft Electronics for NASA // Proc. IEEE Radiation Effects Data Workshop. 2009. P. 25–31. doi: 10.1109/REDW.2009.5336318.
- Zheng Y., Ganushkina N. Y., Jiggens P. et al. Space Radiation and Plasma Effects on Satellites and Aviation: Quantities and Metrics for Tracking Performance of Space Weather Environment Models // Space Weather. 2019. V. 17. P. 1384–1403. doi: 10.1029/2018SW002042.
- Chen Y., Carver M. R., Morley S. K. et al. Determining Ionizing Doses in Medium Earth Orbits Using Long-Term GPS Particle Measurements // Proc. IEEE Aerospace Conference. 2021. Big Sky, MT, USA. Art. ID. 50100. doi: 10.1109/AERO50100.2021.9438516.
- Ecoffet R. Overview of In-Orbit Radiation Induced Spacecraft Anomalies // IEEE Trans. Nuclear Science. 2013. V. 60. P. 1791–1815.
- Stassinopoulos E.G., Raymond J. P. The space radiation environment for electronics // Proc. IEEE. 1988. V. 76. P. 1423–1442. doi: 10.1109/5.90113.
- Baker D. N., McPherron R. L., Cayton T. E. et al. Linear prediction filter analysis of relativistic electron properties at 6.6RE // J. Geophysical Research: Space Physics. 1990. V. 95. P. 15133–15140.
- Glauert S. A., Horne R. B., Meredith N. P. A 30-Year Simulation of the Outer Electron Radiation Belt // Space Weather. 2018. V. 16. P. 1498–1522. doi: 10.1029/2018SW001981.
- Murphy K. R., Watt C. E.J., Mann I. R. et al. The Global Statistical Response of the Outer Radiation Belt during Geomagnetic Storms // Geophysical Research Letters. 2018. V. 45. P. 3783–3792. doi: 10.1002/2017gl076674.
- Ozeke L. G., Mann I. R., Olifer L. et al. Rapid Outer Radiation Belt Flux Dropouts and Fast Acceleration During the March 2015 and 2013 Storms: The Role of Ultra-Low Frequency Wave Transport From a Dynamic Outer Boundary // J. Geophysical Research: Space Physics. 2020. V. 125. Art. ID. e2019JA027179. doi: 10.1029/2019JA027179.
- Claudepierre S. G., O’Brien T.P., Looper M. D. et al. A Revised Look at Relativistic Electrons in the Earth’s Inner Radiation Zone and Slot Region // J. Geophysical Research: Space Physics. 2019. V. 124. P. 934–951. doi: 10.1029/2018JA026349.
- Piet A. S., Bourdarie S., Boscher D. et al. A Model for the Geostationary Electron Environment: POLE, From 30 keV to 5.2 MeV // IEEE Trans. Nuclear Science. 2006. V. 53. P. 1844–1850.
- Allison H. J., Horne R. B., Glauert S. A. et al. The magnetic local time distribution of energetic electrons in the radiation belt region // J. Geophysical Research: Space Physics. 2017. V. 122. P. 8108–8123. doi: 10.1002/2017JA024084.
- Sicard-Piet A., Bourdarie S., Boscher D. et al. A new international geostationary electron model: IGE-2006, from 1 keV to 5.2 MeV // Space Weather. 2008. V. 6. doi: 10.1029/2007SW000368.
- Balikhin M.A., Boynton R. J., Walker S. N. et al. Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit // Geophysical Research Letters. 2011. V. 38. Art. ID. 18105.
- Claudepierre S. G., O’Brien T. P. Specifying High-Altitude Electrons Using Low-Altitude LEO Systems: The SHELLS Model // Space Weather. 2020. V. 18. Art. ID. e2019SW002402. doi: 10.1029/2019sw002402.
- Pires de Lima R., Chen Y., Lin Y. Forecasting Megaelectron-Volt Electrons inside Earth’s Outer Radiation Belt: PreMevE2.0 Based on Supervised Machine Learning Algorithms // Space Weather. 2020. V. 18. Art. ID. e2019SW002399. doi: 10.1029/2019SW002399.
- Smirnov A. G., Berrendorf M., Shprits Y. Y. et al. Medium Energy Electron Flux in Earth’s Outer Radiation Belt (MERLIN): A Machine Learning Model // Space Weather. 2020. V. 18. Art. ID. e2020SW002532. doi: 10.1029/2020SW002532.
- Ma D., Chu X., Bortnik J. et al. Modeling the dynamic variability of sub-relativistic outer radiation belt electron fluxes using machine learning // Space Weather. 2022. V. 20. Art. ID. e2022SW003079. doi: 10.1029/2022SW003079.
- Mauk B. H., Fox N. J., Kanekal S. G. et al. Science Objectives and Rationale for the Radiation Belt Storm Probes Mission // Space Science Reviews. 2013. V.179. P. 3–27,
- Tsyganenko N. A., Sitnov M. I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms // J. Geophysical Research. 2005. V. 110. Art. ID. A03208.
- Kessel R. L., Fox N. J., Weiss M. The Radiation Belt Storm Probes (RBSP) and Space Weather // Space Science Reviews. 2013. V. 179. P. 531–543.
- Blake J. B., Carranza P. A., Claudepierre S. G. et al. The Magnetic Electron Ion Spectrometer (MagEIS) Instruments aboard the Radiation Belt Storm Probes (RBSP) Spacecraft // Space Science Reviews. 2013. P. 179. doi: 10.1007/s11214-013-9991-8.
- Tsyganenko N. A. Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause //J. Geophysical Research. 1995. V. 100. P. 5599–5612.
- Kletzing C.A., Kurth W. S., Acuna M. et al. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP // Space Science Reviews. 2013. V. 179. P. 127–181.
Arquivos suplementares
