Atmospheric losses of N+ and O+ under the extreme solar conditions during geomagnetic reversals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

According to the widespread concept, the magnetosphere shields the planet's atmosphere from erosion caused by the solar wind. We have previously shown that during geomagnetic polarity reversals, when the magnetic field weakens to about 10 % of the present one, its shielding is still effective. This conclusion was obtained for quiet periods of solar activity. However, since the duration of a geomagnetic reversal can cover several thousand years, during which many extreme events can occur, changes in solar parameters such as solar wind pressure and EUV-flux should be considered. At high EUV-flux, the concentrations of nitrogen and oxygen, as well as their losses, increase in the Earth's upper atmosphere. We have considered the most significant mechanisms of heavy ion escape from Earth's atmosphere and estimated their losses within the framework of a semi-empirical model. The results show that a weak geomagnetic field and strong solar activity lead to a change in the dominant escape mechanism and to significant atmospheric losses of preferentially lighter isotopes.

Texto integral

Acesso é fechado

Sobre autores

O. Tsareva

Space Research Institute

Autor responsável pela correspondência
Email: olga8.92@mail.ru
Rússia, Moscow

A. Cannell

USP

Email: olga8.92@mail.ru

Institute of Advanced Studies (Human Evolution)

Brasil, São Paulo

N. Levashov

Space Research Institute; Lomonosov MSU

Email: olga8.92@mail.ru

Faculty of Physics

Rússia, Moscow; Moscow

H. Malova

Space Research Institute; Lomonosov MSU

Email: olga8.92@mail.ru

Scobeltsyn Institute of Nuclear Physics

Rússia, Moscow; Moscow

V. Popov

Space Research Institute; Lomonosov MSU; National Research University “Higher School of Economics”

Email: olga8.92@mail.ru

Faculty of Physics

Rússia, Moscow; Moscow; Moscow

L. Zelenyi

Space Research Institute; Lomonosov MSU

Email: olga8.92@mail.ru

Scobeltsyn Institute of Nuclear Physics

Rússia, Moscow; Moscow

Bibliografia

  1. Sepkoski J.J. Phanerozoic Overview of Mass Extinction // Patterns and Processes in the History of Life. 1986. P. 277–295. https://doi.org/ 10.1007/978-3-642-70831-2_15
  2. Keller G. Impacts, volcanism and mass extinction: random coincidence or cause and effect? // Australian J. Earth Sciences. 2005. V. 52 Iss. 4–5. P. 725–757. https://doi.org/10.1080/08120090500170393
  3. Raup D.M., Sepkoski J.J. Mass Extinctions in the Marine Fossil Record // Science. 1982. V. 215. Iss. 4539. P. 1501–1503. https://doi.org/10.1126/science.215.4539.1501
  4. Valet J.-P., Fournier A. Deciphering records of geomagnetic reversals // Reviews of Geophysics. 2016. V. 54. Iss. 2. P. 410–446. doi: 10.1002/2015RG000506
  5. Hounslow M.W., Domeier M., Biggin A.J. Subduction flux modulates the geomagnetic polarity reversal rate // Tectonophysics. 2018. Iss. 742. P. 34–49. https://doi.org/10.1016/j.tecto.2018.05.018
  6. Wei Y., Pu Z., Zong Q. et al. Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction // Earth and Planetary Science Letters. 2014. Iss. 394. P. 94–98. https://doi.org/10.1016/j.epsl.2014.03.018
  7. Berner R.A. Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model // American J. Science. 2009. V. 309. Iss. 7. P. 603–606. https://doi.org/10.2475/07.2009.03
  8. Algeo T.J., Meyers P.A., Robinson R.S. et al. Icehouse-greenhouse variations in marine denitrification // Biogeosciences. 2014. V. 11. Iss. 4. P. 1273–1295. https://doi.org/10.5194/bg-11-1273-2014
  9. Johnson B.W., Goldblatt C. EarthN: A New Earth System Nitrogen Model // Geochemistry, Geophysics, Geosystems. 2018. V. 19. Iss. 8. P. 2516–2542. https://doi.org/10.1029/2017GC007392
  10. Cannell A.E.R. The engineering of the giant dragonflies of the Permian: revised body mass, power, air supply, thermoregulation and the role of air density // J. Exp. Biol. 2019. Iss. 221. Art.ID. jeb185405. https://doi.org/10.1242/jeb.185405
  11. Cannell A., Nel A. Paleo-air pressures and respiration of giant Odonatoptera from the Late Carboniferous to the Early Cretaceous // Palaeoentomology. 2023. V. 6. Iss. 4. https://doi.org/10.11646/palaeoentomology.6.4.6
  12. Cannell A.E.R. Too big to fly? An engineering evaluation of the fossil biology of the giant birds of the Miocene in relation to their flight limitations, constraining the minimum air pressure at about 1.3 bar // Animal Biology. 2020. V. 70. Iss. 3. P. 1–20. https://doi.org/10.1163/15707563-bja10001
  13. Cannell A., Blamey N., Brand U. et al. A revised sedimentary pyrite proxy for atmospheric oxygen in the paleozoic: Evaluation for the silurian-devonian-carboniferous period and the relationship of the results to the observed biosphere record // Earth-Science Reviews. 2022. Art. ID104062. https://doi.org/10.1016/j.earscirev.2022.104062
  14. Hoffman J.H., Dodson W.H., Lippincott C.R. et al. Initial ion composition results from the ISIS2 satellite // J. Geophysical Research (1896–1977). 1974. V. 79. Iss. 28. P. 4246–4251. https://doi.org/10.1029/JA079i028p04246
  15. Chappell C.R., Olsen R.C., Green J.L. et al. The discovery of nitrogen ions in the Earth’s magnetosphere // Geophysical Research Letters. 1982. V. 9. Iss. 9. P. 937–940. https://doi.org/10.1029/GL009i009p00937
  16. Cully C.M., Donovan E.F., Yau A.W. et al. Akebono / Suprathermal Mass Spectrometer observations of low-energy ion outflow: Dependence on magnetic activity and solar wind conditions // J. Geophysical Research (Space Physics). 2003. V. 108. Iss. A2. Art.ID. 1093. https://doi.org/10.1029/2001JA009200
  17. Tian F., Kasting J.F., Liu H.-L. et al. Hydrodynamic planetary thermosphere model: 1. Response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling // J. Geophysical Research (Planets). 2008. V. 113. Iss. E5. Art.ID. E05008. https://doi.org/10.1029/2007JE002946.
  18. Chapman S. The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth part II. grazing incidence // Proc. the Physical Society. 1931. V. 43. Iss. 5. P. 483–501. https://doi.org/10.1088/0959–5309/43/5/302
  19. Olivares-Pulido G., Hernández-Pajares M., Aragón- Angel A. et al. A linear scale height Chapman model supported by GNSS occultation measurements // J. Geophysical Research (Space Physics). 2016. V. 121. Iss. 8. P. 7932–7940. https://doi.org/10.1002/2016JA022337
  20. Tian F., Solomon S.C., Qian L. et al. Hydrodynamic planetary thermosphere model: 2. coupling of an electron transport/energy deposition model // J. Geophysical Research: Planets. 2008. V. 113. Iss. E7. https://doi.org/10.1029/2007JE003043
  21. Smithtro C.G., Sojka J.J. Behavior of the ionosphere and thermosphere subject to extreme solar cycle conditions // J. Geophysical Research (Space Physics). 2005. V. 110. Iss. A8. Art.ID. A08306. https://doi.org/10.1029/2004JA010782
  22. Lundin R., Dubinin E.M. Phobos-2 results on the ionospheric plasma escape from Mars // Advances in Space Research. 1992. Iss. 12. P. 255–263. https://doi.org/10.1016/0273-1177(92)90338-X
  23. Tsareva O.O., Dubinin E.M., Malova H.V. et al. Atmospheric escape from the earth during geomagnetic reversal // Ann. Geophys. 2019. V. 63. Iss. 2. Art.ID PA223. https://doi.org/10.4401/ag-8354
  24. Merrill R.T., McFadden P.L. Paleomagnetism and the nature of the geodynamo // Science. 1990. V. 248. Iss. 4953. P. 345–350. https://doi.org/10.1126/science.248.4953.345
  25. Leonhardt R., Fabian K. Paleomagnetic reconstruction of the global geomagnetic field evolution during the matuyama/brunhes transition // Earth and Planetary Science Letters. 2007. Iss. 253. P. 172–195. https://doi.org/10.1016/j.epsl.2006.10.025
  26. Valet J.-P., Thevarasan A., Bassinot F. et al. Two records of relative paleointensity for the past 4 Myr. // Frontiers in Earth Science. 2020. V. 8. Art.ID148. https://doi.org/10.3389/feart.2020.00148
  27. Herrero-Bervera E., Valet J.-P. Absolute paleointensity and reversal records from the Waianae sequence (Oahu, Hawaii, USA) // Earth and Planetary Science Letters. 2005. V. 234. Iss. 1–2. P. 279–296. https://doi.org/10.1016/j.epsl.2005.02.032
  28. Jacobs J.A. Reversals of the Earth’s magnetic field. 2nd edition. Cambridge: Cambridge Univ. Press, 1994.
  29. Glatzmaier G.A., Roberts P.H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal // Nature. 1995. V. 377. Iss. 6546. P. 203–209. https://doi.org/10.1038/377203a0
  30. Wood B.E., Muller H.-R., Zank G.P. et al. Measured mass-loss rates of solar-like stars as a function of age and activity // The Astrophysical J. 2002. V. 574. Iss. 1. P. 412–425. https://doi.org/10.1086/340797
  31. Güdel M., Kasting J. Origins and evolution of life: The young sun and its influence on planetary atmospheres. Cambridge: Cambridge University Press, 2011.
  32. Mansoori A., Khan P., Ahmad R. et al. Evaluation of long term solar activity effects on GPS derived tec. // J. Physics: Conference Series. 2016. V. 759. Art.ID012069. https://doi.org/10.1088/1742-6596/759/1/012069
  33. Krauss S., Pfleger M., Lammer H. Satellite-based analysis of thermosphere response to extreme solar flares // Annales Geophysicae. 2014. V. 32. Iss. 10. P. 1305–1309. https://doi.org/10.5194/angeo-32-1305-2014
  34. Yamauchi M., Wahlund J.-E. Role of the Ionosphere for the Atmospheric Evolution of Planets // Astrobiology. 2007. V. 7. Iss. 5. P. 783–800. https://doi.org/10.1089/ast.2007.0140
  35. Lundin R., Dubinin E.M., Koskinen H. et al. On the momentum transfer of the solar wind to the Martian topside ionosphere // Geophysical Research Letters. 1991. V. 18. Iss. 6. P. 1059–1062. https://doi.org/10.1029/90GL02604
  36. Lundin R., Lammer H., Ribas I. Planetary magnetic fields and solar forcing: Implications for atmospheric evolution // Space Science Reviews. 2007. V. 129. Iss. 1–3. P. 245–278. https://doi.org/10.1007/s11214-007-9176-4
  37. Brain D.A., Bagenal F., Ma Y.-J., et al. Atmospheric escape from unmagnetized bodies // J. Geophys. Res. Planets. 2016. V. 121. https://doi.org/10.1002/2016JE005162
  38. Gronoff G., Arras P., Baraka S. et al. Atmospheric escape processes and planetary atmospheric evolution: from misconceptions to challenges // Proc. European planetary science congress. 2020. EPSC2020–32. https://doi.org/10.5194/epsc2020-32
  39. Gunell H., Maggiolo R., Nilsson H. et al. Why an intrinsic magnetic field does not protect a planet against atmospheric escape // Astronomy and Astrophysics. 2018. V. 614. Iss. L3. https://doi.org/10.1051/0004-6361/201832934
  40. Seki K., Elphic R.C., Hirahara M. et al. On atmospheric loss of oxygen ions from Earth through magnetospheric processes // Science. 2001. V. 291. Iss. 5510. P. 1939–1941. https://doi.org/10.1126/science.1058913
  41. Slapak R., Hamrin M., Pitkänen T. et al. Quantification of the total ion transport in the near-Earth plasma sheet // Annales Geophysicae. 2017. V. 35. Iss. 4. P. 869–877. https://doi.org/10.5194/angeo-35-869-2017
  42. Slapak R., Schillings A., Nilsson H. et al. Atmospheric loss from the dayside open polar region and its dependence on geomagnetic activity: implications for atmospheric escape on evolutionary timescales // Annales Geophysicae. 2017. V. 35. Iss. 3. P. 721–731. https://doi.org/10.5194/angeo-35-721-2017
  43. Banks P.M., Holzer T.E. The polar wind // J. Geophysical Research. 1968. V. 73. Iss. 21. P. 6846–6854. https://doi.org/10.1029/JA073i021p06846
  44. Yau A.W., Abe T., Peterson W.K. The polar wind: Recent observations // J. Atmospheric and Solar-Terrestrial Physics. 2007. V. 69. Iss. 16. P. 1936–1983. https://doi.org/10.1016/j.jastp.2007.08.010
  45. Pierrard V., Lemaire J. Lorentzian ion exosphere model // J. Geophysical Research. 1996. V. 101. Iss. A4. P. 7923–7934. https://doi.org/10.1029/95JA03802
  46. Strangeway R.J., Ergun R.E., Su Y.-J. et al. Factors controlling ionospheric outflows as observed at intermediate altitudes // J. Geophysical Research (Space Physics). 2005. Iss. 110. Art.ID A03221. https://doi.org/10.1029/2004ja010829
  47. Fok M.-C., Ebihara Y., Moore T.E. Inner magnetospheric plasma interaction and coupling with the ionosphere // Adv. Polar Upper Atmos. Res. 2005. V. 19. P. 106–134.
  48. Pollock C.J., Chandler M.O., Moore T.E. et al. A survey of upwelling ion event characteristics // J. Geophys. Res. 1990. V. 95. Iss. A11. P. 18969–18980. https://doi.org/10.1029/JA095iA11p18969
  49. Perez-de-Tejada H. Momentum transport in the solar wind erosion of the Mars ionosphere // J. Geophysical Research: Planets. 1998. Iss. 103. P. 31499–31508. https://doi.org/10.1029/1998JE900001
  50. Perez-de-Tejada H. Solar wind-driven plasma flows in the Venus and Mars ionospheres // Advances in Space Research. 1992. V. 12. Iss. 9. P. 265–274. https://doi.org/10.1016/0273-1177(92)90339-Y
  51. Lammer H., Scherf M., Kurokawa H. et al. Loss and fractionation of noble gas isotopes and moderately volatile elements from planetary embryos and early Venus, Earth and Mars // Space Science Reviews. 2020. V. 216. Iss. 4. Art.ID. 74. https://doi.org/10.1007/s11214-020-00701-x

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. (a) – frequency of geomagnetic reversals in the Phanerozoic era and their modeled values (dashed), for which data are missing [5]. (b) – percentage and mass of atmospheric oxygen O2 [7]; (c) – secular changes in nitrogen isotope ratios δ15N with an average value of +2.0±0.3‰ (dashed line) [8]. The average long-term trend is shown by the black curve and the uncertainty region around it. The symbol δ expresses the change in isotope ratios between the sample and the standard: δX = (Rsample/ Rstandart – 1) . 1000 ‰, where R is the ratio of the heavy/light isotope of element X

Baixar (325KB)
3. Fig. 2. (a) – oxygen O+ (solid) and nitrogen N+ (dashed) ion density profiles, (b) – temperature and (c) – exobase height obtained from the theoretical model [14] similar to the GAIT model [21], under different conditions of solar EUV flux (normalized to the modern average solar flux of ~1×EUV, which is a solar flux of EUV ≈ 5.1 mW/m2)

Baixar (217KB)
4. Fig. 3. Fractionation (separation) coefficient of nitrogen (dashed) and oxygen (solid) isotopes due to SW-induced losses, depending on EUV flux (at SW pressure Psw0 = 1.4 nPa and in the absence of intrinsic magnetic field BTot = 0 μT)

Baixar (81KB)
5. Fig. 4. Oxygen O+ (solid) and nitrogen N+ (dashed) ion loss rates as a function of solar EUV flux: (a) – contribution of each dissipation mechanism for a quadrupole magnetic field with μT and at SW pressure of 1.4 nPa; (b, c) – total O+ and N+ loss rates for different magnetic field strengths and configurations at 1.4 nPa and 30 nPa

Baixar (262KB)
6. Fig. 5. Oxygen O+ (solid) and nitrogen N+ (dashed) ion loss rates for a quadrupole magnetic field with μT (thin) and = 0. 25 μT (thick) as a function of SW pressure

Baixar (99KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025