Fluorine conducting ceramics based on BiF3

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The temperature dependence of the ionic conductivity of a ceramic sample of the Bi0.94Ba0.06F2.94 solid electrolyte was studied using impedance spectroscopy in the temperature range 293–473 K. The ceramics was obtained by solid-phase synthesis (873 K, 3 h) in a closed Cu ampoule and is a heterovalent solid solution of tysonite structure (space group) with lattice parameters a = 7.1482(8) and c = 7.3279(5) Å. The conductivity value at room temperature and its activation enthalpy are equal to σcer = 3 × 10–5 S/cm and DHs = 0.49 ± 0.05 eV, respectively. The ion-conducting properties of isostructural solid electrolytes Bi1–yBayF3–y and La1–yBayF3–y with similar values of ionic radii of matrix cations (1.17 and 1.16 Å for Bi3+ and La3+, respectively) are compared. The conductivity at 473 K of Bi0.94Ba0.06F2.94 ceramics exceeds the electrical conductivity of ceramics and La0.95Ba0.05F2.95 single crystals by 6 and 3.3 times, respectively.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Sorokin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: nsorokin1@yandex.ru
Ресей, Moscow

Әдебиет тізімі

  1. Соболев Б.П., Гарашина Л.С., Федоров П.П. и др. // Кристаллография. 1973. Т. 18. Вып. 4. С. 751.
  2. Zalkin A., Templeton D.H. // J. Am. Chem. Soc. 1953. V. 75. P. 2453.
  3. Сорокин Н.И., Каримов Д.Н. // Кристаллография. 2023. Т. 68. № 2. С. 272. https://doi.org/10.31857/S0023476123020182
  4. Greis O., Martinez-Ripoll M. // Z. Anorg. Allg. Chem. 1977. B. 436. № 1. S. 105. https://doi.org/10.1002/zaac.19774360112
  5. Shafer M.W., Chandrashekhar G.N., Figat R.A. // Solid State Ionics. 1981. V. 5. P. 633. https://doi.org/10.1016/0167-2738(81)90334-9
  6. Ардашникова Е.И., Борзенкова М.П., Калинченко Ф.В., Новоселова А.В. // Журн. неорган. химии. 1981. Т. 26. № 7. С. 1727.
  7. Ardasnikova E.I., Prituzhalov V.A., Kutsenok I.V. // Functionalized Inorganic Fluorides: Synthesis, Characterization and Properties of Nanostructured Solids / Ed. Tressaud A. Chippenham: John Wiley & Sons. 2010. P. 423.
  8. Свищев И.М., Ардашникова Е.И., Борзенкова М.П., Новоселова А.В. // Автор. свидетельство СССР. SU 1122963, 7.11.1984, Бюл. № 41.
  9. Baumgartner J.F., Krumeich F., Worle M. et al. // Commun. Chem. 2022. V. 5. P. 6. https://doi.org/10.1038/s42004-021-00622-y
  10. Liu T., Peng N., Zhang X. et al. // Energy Storage Mater. 2021. V. 42. P. 42. https://doi.org/10.1016/j.ensm.2019.03.028
  11. Xiao A.W., Galatolo G., Pasta M. // Joule. 2021. V. 5. № 11. P. 2823. https://doi.org/10.1016/j.joule.2021.09.016
  12. Shimoda K., Minato T., Konishi H. et al. // J. Electroanal. Chem. 2021. V. 895. P. 115508. https://doi.org/10.1016/j.jelechem.2021.115508
  13. Reddy M.A., Fichtner M. // J. Mater. Chem. 2011. V. 21. P. 17059.
  14. Слободюк А.Б., Полянцев М.М., Гончарук В.К., Кавун В.Я. // Вестник ДВО РАН. 2021. № 5. С. 95. https://doi.org/10.37102/0869-7698_2021_219_05_08
  15. Konishi H., Minato T., Abe T., Ogumi Z. // ChemistrySelect. 2020. V. 5. P. 4943. https://doi.org/10.1002/slct.202000713
  16. Кавун В.Я., Полянцев М.М., Меркулов Е.Б., Гончарук В.К. // Журн. структур. химии. 2019. Т. 60. № 2. С. 231.
  17. Kavun V.Yu., Uvarov N.F., Slobodyuk A.B. et al. // J. Solid State Chem. 2018. V. 263. P. 203. https://doi.org/10.1016/j.jssc.2018.04.029
  18. Притужалов В.А., Ардашникова Е.А., Долгих В.А., Абакумов А.М. // Журн. неорган. химии. 2011. Т. 56. № 3. С. 355.
  19. Rhandour A., Reau J.M., Matar S. et al. // Mater. Res. Bull. 1985. V. 20. P. 1309.
  20. Reau J.M., Tian S.B., Rhandour A. et al. // Solid State Ionics. 1985. V. 15. P. 217.
  21. Shannon R.D. // Acta Cryst. A. 1976. V. 32. № 5. P. 751.
  22. Greis O., Martinez M. // Z. Anorg. Allg. Chem. 1977. B. 436. № 9. S. 105.
  23. Cheetham A.B., Norman N. // Acta Chem. Scand. A. 1974. V. 28. P. 55.
  24. Иванов-Шиц А.К., Сорокин Н.И., Федоров П.П., Соболев Б.П. // ФТТ. 1983. Т. 25. № 6. С. 1748.
  25. Мурин И.В., Амелин Ю.В. // Вест. Ленингр. ун-та. 1983. № 22. С. 97.
  26. Chable J., Dieudonne B., Body M. et al. // Dalton Trans. 2015. V. 44. P. 19625. https://doi.org/10.1039/c5dt02321a
  27. Bhatia H., Thieu D.T., Pohl H.P. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. P. 23707.
  28. Сорокин Н.И., Фоминых М.В., Кривандина Е.А. и др. // ФТТ. 1998. Т. 40. № 4. С. 658.
  29. Kroger F.A. The chemistry of imperfect crystals. Amsterdam: North-Holland. 1964. 1039 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Impedance plot and equivalent electrical circuit for the electrochemical system Ag|Bi0.94Ba0.06F2.94|Ag ceramics at 294 K. The numbers at the shaded points indicate the frequency in kHz. The total resistance of the ceramic sample is Rcer = Rig + Rgb = 6.5×104 Ohm (Rig << Rcer).

Жүктеу (70KB)
3. Fig. 2. Concentration dependence of intragranular conductivity of Bi1–yBayF3–y polycrystals: 1 – data from the conducted study, 2 – data from [7, 18], 3 – data from [19].

Жүктеу (65KB)
4. Fig. 3. Temperature dependences of the anionic conductivity of fluoride ceramics Bi0.94Ba0.06F2.94 in coordinates lgσT, 103/T: 1, 2 – first sample, 3, 4 – second sample, 1, 3 – heating, 2, 4 – cooling.

Жүктеу (67KB)
5. Fig. 4. Temperature dependences of the anionic conductivity of fluoride materials in the coordinates lgσ, 103/T: 1 – Bi0.94Ba0.06F2.94 ceramics (heating), 2 – BiF3 polycrystal [3], 3 – Bi1–yKyF3–2y polycrystal [20], 4 – Bi1–yPbyF3–y polycrystal [25], 5 – La0.95Ba0.05F2.95 ceramics [26, 27], 6 – La0.95Ba0.05F2.95 single crystal [28].

Жүктеу (78KB)

© Russian Academy of Sciences, 2024