THERMOSTIMULATED EVOLUTION OF THE CRYSTAL AND MAGNETIC STRUCTURE OF YTTRIUM FERRITE GARNET NANOPARTICLES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Iron-containing oxides form one of the most important classes of functional materials, which find a wide variety of applications. A promising approach is their use in biomedical technologies as components of systems for visualization, drug delivery, magnetic hyperthermia, etc. Nanocrystalline particles of Y3Fe5O12 garnet, obtained by glycine-nitrate combustion with subsequent thermal treatment, have been experimentally investigated. The results of studying the evolution of the crystal and magnetic structure of Y3Fe5O12 nanoparticles in dependence of the synthesis temperature are presented. A complex analysis using X-ray diffractometry, scanning electron microscopy, and Mössbauer spectroscopy has been performed. A relationship of the size and structural quality of Y3Fe5O12 nanoparticles with the observed magnetic characteristics is  evealed.

About the authors

T. Yu. Kiseleva

Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia

Email: Kiseleva.tyu@physics.msu.ru
Россия, Москва

V. S. Rusakov

Moscow State University

Email: rusakov@phys.msu.ru
Moscow, 119991 Russia

R. Abbas

St. Petersburg State Institute of Technology, St. Petersburg, 198013 Russia

Email: Kiseleva.tyu@physics.msu.ru
Россия, Санкт-Петербург

E. V. Lazareva

Lomonosov Moscow State University, Moscow, Russia

Email: Kiseleva.tyu@physics.msu.ru
Россия, Москва

P. Yu. Tyapkin

Institute of Solid-State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630128 Russia

Email: Kiseleva.tyu@physics.msu.ru
Россия, Новосибирск

K. D. Martinson

Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia

Email: Kiseleva.tyu@physics.msu.ru
Россия, Санкт-Петербург

A. S. Komlev

Lomonosov Moscow State University, Moscow, Russia

Email: Kiseleva.tyu@physics.msu.ru
Россия, Москва

N. S. Perov

Lomonosov Moscow State University, Moscow, Russia

Email: Kiseleva.tyu@physics.msu.ru
Россия, Москва

V. I. Popkov

Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia

Author for correspondence.
Email: Kiseleva.tyu@physics.msu.ru
Россия, Санкт-Петербург

References

  1. Cherepanov V., Kolokolov I., L’vov V. // Phys. Rep. 1993. V. 229. P. 81. https://doi.org/10.1016/0370-1573(93)90107-O
  2. Dionne G.F. Magnetic Oxides. Springer, 2009. V. 14. 321 p.
  3. Mallmann E.J.J., Sombra A.S.B., Goes J.C. et al. // Proc. Solid State Phenomena. Trans Tech Publ. 2013. V. 202. P. 65.
  4. Nakashima H., Pradipto A.-M., Akiyama T. et al. // AIP Adv. 2020. V. 10. P. 045029. https://doi.org/10.1063/1.5130147
  5. McCloy J.S., Walsh B. // IEEE Trans. Magn. 2013. V. 49. P. 4253. https://doi.org/10.1109/TMAG.2013.22385107
  6. Kim T.-Y., Yamazaki Y., Hong Y.-D. et al. // Proc. 2003 IEEE International Magnetics Conference (INTERMAG). IEEE. 2003. P. EQ-04.
  7. Jeon Y.H., Lee J.W., Oh J.H. et al. // Phys. Status Solidi. A. 2004. V. 201. P. 1893. https://doi.org/10.1002/pssa.200304626
  8. Hirazawa H., Matsumoto R., Sakamoto M. // J. Ceram. Soc. Jpn. 2021. V. 129. P. 579. https://doi.org/10.2109/jcersj2.21058
  9. Aono H., Ebara H., Senba R. et al. // J. Am. Ceram. Soc. 2011. V. 94. P. 4116. https://doi.org/10.1111/j.1551-2916.2011.04879.x
  10. Liang Y.-J., Xie J., Yu J. et al. // Nano Select. 2021. V. 2. P. 216. https://doi.org/10.1002/nano.202000169
  11. Fopase R., Saxena V., Seal P. et al. // Mater. Sci. Eng. C. 2020. V. 116. P. 111163. https://doi.org/10.1016/j.msec.2020.111163
  12. Komlev A.S., Zverev V.I. // Magnetic Materials and Technologies for Medical Applications / Ed. Tishin A.M. Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing, 2022. P. 437.
  13. Davydov A.S., Belousov A.V., Krusanov G.A. et al. // J. Appl. Phys. 2021. V. 129. P. 033902. https://doi.org/10.1063/5.0032843
  14. Soleimani H., Abba Z., Yahya N. et al. // Int. J. Mol. Sci. 2012. V. 13. P. 8540. .https://doi.org/10.3390/ijms13078540
  15. Winkler H., Eisberg R., Alp E. et al. // Z. Phys. B: Condens. Matter. 1983. V. 49. P. 331.
  16. Sawatzky G.A., Van Der Woude F., Morris A.H. // Phys. Rev. 1969. V. 183. P. 383. https://doi.org/10.1103/PhysRev.183.383
  17. Haneda K., Morrish A. // J. Magn. Soc. Jpn. 1998. V. 22. S1. P. 255.
  18. Niyaifar M., Mohammadpour H., Dorafshani M. et al. // J. Magn. Magn. Mater. 2016. V. 409. P. 104. https://doi.org/10.1016/j.jmmm.2016.02.097
  19. Niaz Akhtar M., Azhar Khan M., Ahmad M. et al. // J. Magn. Magn. Mater. 2014. V. 368. P. 393. https://doi.org/10.1016/j.jmmm.2014.06.004
  20. Kitayama K., Sakaguchi M., Takahara Y. et al. // J. Solid State Chem. 2004. V. 177. P. 1933. https://doi.org/10.1016/j.jssc.2003.12.040
  21. Popkov V.I., Almjasheva O.V., Panchu V.V. et al. // Doklady Chemistry. 2016. V. 471. P. 356. https://doi.org/10.1134/S0012500816120041
  22. Noun W., Popova E., Bardelli F. et al. // Phys. Rev. B. 2010. V. 81. P. 054411. https://doi.org/10.1103/PhysRevB.81.054411
  23. Jacob K.T., Rajitha G. // Solid State Ionics. 2012. V. 224. P. 32. https://doi.org/10.1016/j.ssi.2012.07.003
  24. Sadhana K., Murthy S.R., Praveena K. // Mater. Sci. Semicond. Process. 2015. V. 34. P. 305. https://doi.org/10.1016/j.mssp.2015.02.056
  25. Kum J.S., Kim S.J. et al. // ICAME. 2003. Springer, 2004. P. 169.
  26. Abbas R., Martinson K.D., Kiseleva T.Y. et al. // Mater. Today Commun. 2022. V. 32. P. 103866. https://doi.org/10.1016/j.mtcomm.2022.103866
  27. Matsnev M.E., Rusakov V.S. // AIP Conf. Proc. Olomouc, Czech Republic. 2012. P. 178. https://doi.org/10.1063/1.4759488
  28. Башкиров Ш.Ш., Либерман А.Б., Синявский В.И. Магнитная микроструктура ферритов. Казань: Изд-во Казан. ун-та, 1978. 92 с.
  29. Vandormael D., Grandjean F., Hautot D. et al. // J. Phys. Condens. Matter. 2001. V. 13 . P. 1759. https://doi.org/10.1088/0953-8984/13/8/312
  30. Sanchez R.D., Rivas J., Vaqueiro P. et al // J. Magn. Magn. Mater. 2002. V. 247. P. 92. https://doi.org/10.1016/S0304-8853(02)00170-1

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (326KB)
4.

Download (769KB)
5.

Download (229KB)
6.

Download (353KB)
7.

Download (111KB)

Copyright (c) 2023 Russian Academy of Sciences