THERMOSTIMULATED EVOLUTION OF THE CRYSTAL AND MAGNETIC STRUCTURE OF YTTRIUM FERRITE GARNET NANOPARTICLES
- Authors: Kiseleva T.Y.1, Rusakov V.S.2, Abbas R.3, Lazareva E.V.4, Tyapkin P.Y.5, Martinson K.D.6, Komlev A.S.4, Perov N.S.4, Popkov V.I.6
-
Affiliations:
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Moscow State University
- St. Petersburg State Institute of Technology, St. Petersburg, 198013 Russia
- Lomonosov Moscow State University, Moscow, Russia
- Institute of Solid-State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630128 Russia
- Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia
- Issue: Vol 68, No 3 (2023)
- Pages: 465-473
- Section: НАНОМАТЕРИАЛЫ, КЕРАМИКА
- URL: https://gynecology.orscience.ru/0023-4761/article/view/673472
- DOI: https://doi.org/10.31857/S0023476123700182
- EDN: https://elibrary.ru/XCVXGZ
- ID: 673472
Cite item
Abstract
Iron-containing oxides form one of the most important classes of functional materials, which find a wide variety of applications. A promising approach is their use in biomedical technologies as components of systems for visualization, drug delivery, magnetic hyperthermia, etc. Nanocrystalline particles of Y3Fe5O12 garnet, obtained by glycine-nitrate combustion with subsequent thermal treatment, have been experimentally investigated. The results of studying the evolution of the crystal and magnetic structure of Y3Fe5O12 nanoparticles in dependence of the synthesis temperature are presented. A complex analysis using X-ray diffractometry, scanning electron microscopy, and Mössbauer spectroscopy has been performed. A relationship of the size and structural quality of Y3Fe5O12 nanoparticles with the observed magnetic characteristics is evealed.
About the authors
T. Yu. Kiseleva
Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
Email: Kiseleva.tyu@physics.msu.ru
Россия, Москва
V. S. Rusakov
Moscow State University
Email: rusakov@phys.msu.ru
Moscow, 119991 Russia
R. Abbas
St. Petersburg State Institute of Technology, St. Petersburg, 198013 Russia
Email: Kiseleva.tyu@physics.msu.ru
Россия, Санкт-Петербург
E. V. Lazareva
Lomonosov Moscow State University, Moscow, Russia
Email: Kiseleva.tyu@physics.msu.ru
Россия, Москва
P. Yu. Tyapkin
Institute of Solid-State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630128 Russia
Email: Kiseleva.tyu@physics.msu.ru
Россия, Новосибирск
K. D. Martinson
Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia
Email: Kiseleva.tyu@physics.msu.ru
Россия, Санкт-Петербург
A. S. Komlev
Lomonosov Moscow State University, Moscow, Russia
Email: Kiseleva.tyu@physics.msu.ru
Россия, Москва
N. S. Perov
Lomonosov Moscow State University, Moscow, Russia
Email: Kiseleva.tyu@physics.msu.ru
Россия, Москва
V. I. Popkov
Ioffe Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia
Author for correspondence.
Email: Kiseleva.tyu@physics.msu.ru
Россия, Санкт-Петербург
References
- Cherepanov V., Kolokolov I., L’vov V. // Phys. Rep. 1993. V. 229. P. 81. https://doi.org/10.1016/0370-1573(93)90107-O
- Dionne G.F. Magnetic Oxides. Springer, 2009. V. 14. 321 p.
- Mallmann E.J.J., Sombra A.S.B., Goes J.C. et al. // Proc. Solid State Phenomena. Trans Tech Publ. 2013. V. 202. P. 65.
- Nakashima H., Pradipto A.-M., Akiyama T. et al. // AIP Adv. 2020. V. 10. P. 045029. https://doi.org/10.1063/1.5130147
- McCloy J.S., Walsh B. // IEEE Trans. Magn. 2013. V. 49. P. 4253. https://doi.org/10.1109/TMAG.2013.22385107
- Kim T.-Y., Yamazaki Y., Hong Y.-D. et al. // Proc. 2003 IEEE International Magnetics Conference (INTERMAG). IEEE. 2003. P. EQ-04.
- Jeon Y.H., Lee J.W., Oh J.H. et al. // Phys. Status Solidi. A. 2004. V. 201. P. 1893. https://doi.org/10.1002/pssa.200304626
- Hirazawa H., Matsumoto R., Sakamoto M. // J. Ceram. Soc. Jpn. 2021. V. 129. P. 579. https://doi.org/10.2109/jcersj2.21058
- Aono H., Ebara H., Senba R. et al. // J. Am. Ceram. Soc. 2011. V. 94. P. 4116. https://doi.org/10.1111/j.1551-2916.2011.04879.x
- Liang Y.-J., Xie J., Yu J. et al. // Nano Select. 2021. V. 2. P. 216. https://doi.org/10.1002/nano.202000169
- Fopase R., Saxena V., Seal P. et al. // Mater. Sci. Eng. C. 2020. V. 116. P. 111163. https://doi.org/10.1016/j.msec.2020.111163
- Komlev A.S., Zverev V.I. // Magnetic Materials and Technologies for Medical Applications / Ed. Tishin A.M. Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing, 2022. P. 437.
- Davydov A.S., Belousov A.V., Krusanov G.A. et al. // J. Appl. Phys. 2021. V. 129. P. 033902. https://doi.org/10.1063/5.0032843
- Soleimani H., Abba Z., Yahya N. et al. // Int. J. Mol. Sci. 2012. V. 13. P. 8540. .https://doi.org/10.3390/ijms13078540
- Winkler H., Eisberg R., Alp E. et al. // Z. Phys. B: Condens. Matter. 1983. V. 49. P. 331.
- Sawatzky G.A., Van Der Woude F., Morris A.H. // Phys. Rev. 1969. V. 183. P. 383. https://doi.org/10.1103/PhysRev.183.383
- Haneda K., Morrish A. // J. Magn. Soc. Jpn. 1998. V. 22. S1. P. 255.
- Niyaifar M., Mohammadpour H., Dorafshani M. et al. // J. Magn. Magn. Mater. 2016. V. 409. P. 104. https://doi.org/10.1016/j.jmmm.2016.02.097
- Niaz Akhtar M., Azhar Khan M., Ahmad M. et al. // J. Magn. Magn. Mater. 2014. V. 368. P. 393. https://doi.org/10.1016/j.jmmm.2014.06.004
- Kitayama K., Sakaguchi M., Takahara Y. et al. // J. Solid State Chem. 2004. V. 177. P. 1933. https://doi.org/10.1016/j.jssc.2003.12.040
- Popkov V.I., Almjasheva O.V., Panchu V.V. et al. // Doklady Chemistry. 2016. V. 471. P. 356. https://doi.org/10.1134/S0012500816120041
- Noun W., Popova E., Bardelli F. et al. // Phys. Rev. B. 2010. V. 81. P. 054411. https://doi.org/10.1103/PhysRevB.81.054411
- Jacob K.T., Rajitha G. // Solid State Ionics. 2012. V. 224. P. 32. https://doi.org/10.1016/j.ssi.2012.07.003
- Sadhana K., Murthy S.R., Praveena K. // Mater. Sci. Semicond. Process. 2015. V. 34. P. 305. https://doi.org/10.1016/j.mssp.2015.02.056
- Kum J.S., Kim S.J. et al. // ICAME. 2003. Springer, 2004. P. 169.
- Abbas R., Martinson K.D., Kiseleva T.Y. et al. // Mater. Today Commun. 2022. V. 32. P. 103866. https://doi.org/10.1016/j.mtcomm.2022.103866
- Matsnev M.E., Rusakov V.S. // AIP Conf. Proc. Olomouc, Czech Republic. 2012. P. 178. https://doi.org/10.1063/1.4759488
- Башкиров Ш.Ш., Либерман А.Б., Синявский В.И. Магнитная микроструктура ферритов. Казань: Изд-во Казан. ун-та, 1978. 92 с.
- Vandormael D., Grandjean F., Hautot D. et al. // J. Phys. Condens. Matter. 2001. V. 13 . P. 1759. https://doi.org/10.1088/0953-8984/13/8/312
- Sanchez R.D., Rivas J., Vaqueiro P. et al // J. Magn. Magn. Mater. 2002. V. 247. P. 92. https://doi.org/10.1016/S0304-8853(02)00170-1
Supplementary files
