COMPOSITION MATERIALS IN THE CaF2–BaF2 SYSTEM

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Composite nanomaterials (1 – x)CaF2–xBaF2 with 0.4 ≤ х ≤ 0.6 have been prepared by directional melt crystallization in a fluorinating atmosphere. The structural, optical, mechanical, and electrical characteristics of the synthesized nanocomposites are studied. Biphasic (1 – x)CaF2–xBaF2 composites have a lamellar fine microstructure. The lamella thickness decreases with an increase in the BaF2 content and reaches 30–50 nm for the composition with x = 0.5. The composites retain high transparency in the IR range (close to the values for the initial components). The microhardness (НV ≈ 5.0 GPa) and ionic conductivity (σdc = (1–3) × 103  S/cm at 823 K) of these composites exceed significantly the corresponding parameters of CaF2 and BaF2 crystals. The fluoride nanocomposites under investigation are promising materials for practical applications in photonics and solid-state ionics.

Sobre autores

I. Buchinskaya

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Email: buchinskayaii@gmail.com
Россия, Москва

T. Teplyakova

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: buchinskayaii@gmail.com
Россия, Москва

N. Sorokin

Shubnikov Institute of Crystallography, Federal Scientific and Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, 119333 Russia

Email: nsorokin1@yandex.ru
Россия, Москва

D. Karimov

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of Sciences, Moscow, 119333 Russia

Autor responsável pela correspondência
Email: dnkarimov@gmail.com
Россия, Москва

Bibliografia

  1. Karkera G., Anji Reddy M., Fichtner M. // J. Power Sources. 2021. V. 481. P. 228877. https://doi.org/10.1016/j.jpowsour.2020.228877
  2. Сорокин Н.И., Соболев Б.П. // Кристаллография. 2007. Т. 52. № 5. С. 870.
  3. Fergus J.W. // Sens. Actuators. B. 1997. V. 42. № 2. P. 119. https://doi.org/10.1016/S0925-4005(97)00193-7
  4. Klimm D., Rabe M., Bertram R. et al. // J. Cryst. Growth. 2008. V. 310. № 1. P. 152. https://doi.org/10.1016/j.jcrysgro.2007.09.031
  5. Kozak A., Samuel M., Chretien A. // Rev. Chim. Miner. 1971. V. 8. № 6. P. 805.
  6. Nafziger R.H. // J. Am. Ceram. Soc. 1971. V. 54. № 9. P. 467. https://doi.org/10.1111/j.1151-2916.1971.tb12388.x
  7. Бучинская И.И., Федоров П.П. // Успехи химии. 2004. Т. 73. № 4. С. 404.
  8. O'Horo M.P., White W.B // J. Am. Ceram. Soc. 1971. V. 54. № 11. P. 588. https://doi.org/10.1111/j.1151-2916.1971.tb12216.x
  9. Федоров П.П., Бучинская И.И., Ивановская Н.А. и др. // Докл. РАН. 2005. Т. 401. № 5. С. 652.
  10. Черневская Э.Г., Ананьева Г.В. // ФТТ. 1966. Т. 8. № 1. С. 216.
  11. Wrubel G.P., Hubbard B.E., Agladge N.I. et al. // Phys. Rev. Lett. 2006. V. 96. P. 235503. https://doi.org/10.1103/PhysRevLett.96.235503
  12. Попов П.А., Круговых А.А., Зенцова А.А. и др. // Неорган. материалы. 2022. Т. 58. № 4. С. 414. https://doi.org/10.31857/S0002337X22040133
  13. Sata N., Eberman K., Eberl K., Maier J. // Nature. 2000. V. 408. P. 946. https://doi.org/10.1038/35050047
  14. Sata N., Jin-Philipp N.Y., Eberl K., Maier J. // Solid State Ionics. 2002. V. 154–155. P. 497. https://doi.org/10.1016/S0167-2738(02)00488-5
  15. Jin-Philipp N.Y., Sata N., Maier J. et al. // J. Chem. Phys. 2004. V. 120. № 5. P. 2375. https://doi.org/10.1063/1.1635809
  16. Guo X.X., Matei I., Jin-Phillipp N.Y. et al. // J. Appl. Phys. 2009. V. 105. P. 14321. https://doi.org/10.1063/1.3143623
  17. Merkle R., Maier J. // Z. Phys. Chem. 2022. B. 236. № 6–8. S. 991. https://doi.org/10.1515/zpch-2021-3173
  18. Ruprecht B., Wilkening M., Steuernagel S., Heitjans P. // J. Mater. Chem. 2008. V. 18. P. 5412. https://doi.org/10.1039/B811453F
  19. Duvel A., Ruprecht B., Heitjans P., Wilkening M. // J. Phys. Chem. C. 2011. 115. P. 23784. https://doi.org/10.1021/jp208472f
  20. Duvel A., Heitjans P., Fedorov P.P. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 5842. https://doi.org/10.1021/jacs.7b00502
  21. Duvel A., Heitjans P., Fedorov P.P. et al. // Solid State Sci. 2018. V. 83. P. 188. https://doi.org/10.1016/j.solidstatesciences.2018.05.011
  22. Сорокин Н.И., Бучинская И.И., Федоров П.П., Соболев Б.П. // Неорган. материалы. 2008. Т. 44. № 2. С. 234.
  23. Puin W., Rodewald R., Ramblau R. et al. // Solid State Ionics. 2000. V. 131. № 1–2. P. 159. https://doi.org/10.1016/S0167-2738(00)00630-5
  24. Scholz G., Meyer K., Düvel A. et al. // Z. Anorg. Allg. Chem. 2013. B. 639. № 6. S. 960. https://doi.org/10.1002/zaac.201300083
  25. Ruprecht B., Wilkening M., Feldhoff A. et al. // Phys. Chem. Chem. Phys. 2009. V. 11. № 17. P. 3071. https://doi.org/10.1039/B901293A
  26. Иванов-Шиц А.К., Сорокин Н.И., Федоров П.П., Соболев Б.П. // ФТТ. 1983. Т. 25. № 6. С. 1748.
  27. Wilkening M., Duvel A., Preishuber-Pflugl F. et al. // Z. Kristallogr. Cryst. Mater. 2017. V. 232. № 1–3. P. 107. https://doi.org/10.1515/zkri-2016-1963
  28. Сорокин Н.И., Каримов Д.Н. // ФТТ. 2021. Т. 63. № 10. С. 1485.
  29. Sorokin N.I., Breiter M.W. // Solid State Ionics. 1997. V. 99. P. 241. https://doi.org/10.1016/S0167-2738(97)00190-2
  30. Sorokin N.I., Breiter M.W. // Solid State Ionics. 1999. V. 116. P. 157. https://doi.org/10.1016/S0167-2738(97)00190-2
  31. Fedorov P.P., Turkina T.M., Sobolev B.P. et al. // Solid State Ionics 1982. V. 6. № 4. P. 331. https://doi.org/10.1016/0167-2738(82)90018-2
  32. Каримов Д.Н., Комарькова О.Н., Сорокин Н.И. и др. // Кристаллография. 2010. Т. 55. № 3. С. 556.
  33. Deadmore D.L., Sliney H.E. // 1987. NASA Technical Memorandum 88979. https://ntrs.nasa.gov/citations/19870009237

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (130KB)
3.

Baixar (92KB)
4.

Baixar (81KB)
5.

Baixar (2MB)
6.

Baixar (348KB)
7.

Baixar (71KB)
8.

Baixar (48KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023