Spectral-luminescence and scintillation properties of p-terphenyl single crystal grown from melt

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of the study of the photoluminescent and X-ray luminescent properties of the p-terphenyl crystalline element made from a single crystal grown from a melt using the Bridgman method are presented. The transmission, photoluminescence and X-ray luminescence spectra of the crystals were obtained and analyzed. The kinetics of photoluminescence and X-ray luminescence decay have been studied for p-terphenyl single crystal and the absolute light yield of X-ray luminescence has been determined.

Full Text

Restricted Access

About the authors

M. S. Lyasnikova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Author for correspondence.
Email: mlyasnikova@yandex.ru
Russian Federation, Moscow

A. A. Kylishov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”,

Email: postva@yandex.ru
Russian Federation, Moscow

G. A. Yurasik

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Russian Federation, Moscow

D. N. Karimov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”,

Email: postva@yandex.ru
Russian Federation, Moscow

V. A. Postnikov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Russian Federation, Moscow

A. E. Voloshin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Russian Federation, Moscow

References

  1. Birks J.B. The Theory and Practice of Scintillation Counting: International Series of Monographs on Electronics and Instrumentation. Pergamon Press Ltd, 1967. 662 p.
  2. Красовицкий Б.М., Болотин Б.М. Органические люминофоры. М.: Химия, 1984. 336 с.
  3. Дудник А.В., Андрющенко Л.А., Тарасов В.А. и др. // Приборы и техника эксперимента. 2015. № 2. С. 41. https://doi.org/10.7868/s003281621502007x
  4. Лясникова М.С., Кулишов А.А., Юрасик Г.А. и др. // Кристаллография. 2023. Т. 68. № 4. С. 628. https://doi.org/10.31857/S0023476123600271
  5. Ried W., Freitag D. // Angew. Chem. 1968. V. 80. P. 932. https://doi.org/10.1002/ange.19680802203
  6. Постников В.А., Сорокина Н.И., Алексеева О.А. и др. // Кристаллография. 2018. Т. 63. С. 801. https://doi.org/10.1134/s0023476118050247
  7. Berlman I.B. Handbook of florescence spectra of Aromatic Molecules. N.Y.; London: Academic Press, 1971. 473 p.
  8. Katoh R., Katoh S., Furube A. et al. // J. Phys. Chem. C. 2009. V. 113. P. 2961. https://doi.org/10.1021/jp807684m
  9. Bell Z.W. Scintillators and Scintillation Detectors. Chapter in Handbook of Particle Detection and Imaging. Second Edition. 2021. P. 413. https://doi.org/10.1007/978-3-319-93785-4_15
  10. Yanagida T., Watanabe K., Fujimoto Y. // Nucl. Instrum. Methods Phys. Res. A. 2015. V. 784. P. 111. https://doi.org/10.1016/j.nima.2014.12.031
  11. Scriven D.P., Christian G., Rogachev G.V. et al. // Nucl. Instrum. Methods Phys. Res. A. 2021. V. 1010. P. 165492. https://doi.org/10.1016/j.nima.2021.165492
  12. Selvakumar S., Sivaji K., Balamurugan N. et al. // J. Cryst. Growth. 2005. V. 275. P. e265. https://doi.org/10.1016/j.jcrysgro.2004.10.120
  13. Ai Q., Chen P., Feng Y. et al. // AIP Conf. Proc. 2017. V. 1879. P. 030002. https://doi.org/10.1063/1.5000464
  14. Ai Q., Chen P., Xu Y. et al. // Crystals. 2023. V. 13. P. 2. https://doi.org/10.3390/cryst13010002
  15. Yang W., Han P., Zhu S. et al. // ACS Appl. Electron. Mater. Am. Chem. Soc. 2024. V. 6. P. 4223. https://doi.org/10.1021/acsaelm.4c00328
  16. Vojna D., Karimov D.N., Ivanova A.G. et al. // Opt. Mater. 2023. V. 142. P. 114016. https://doi.org/10.1016/j.optmat.2023.114016
  17. Rodnyi P.A., Mikhrin S.B., Mishin A.N. et al. // IEEE Trans. Nucl. Sci. 2001. V. 48. P. 2340. https://doi.org/10.1109/23.983264
  18. Постников В.А., Кулишов А.А., Островская А.А. и др. // ФТТ. 2019. Т. 61. № 12. С. 2432. https://doi.org/10.21883/ftt.2019.12.48572.45ks
  19. Braem O., Penfold T.J., Cannizzo A. et al. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 3513. https://doi.org/10.1039/c2cp23167k
  20. Hong Y., Lam J.W.Y., Tang B.Z. // Chem. Commun. 2009. № 29. P. 4332. https://doi.org/10.1039/b904665h
  21. Selvakumar S., Sivaji K., Arulchakkaravarthi A. et al. // Mater. Lett. 2007. V. 61. P. 4718. https://doi.org/10.1016/j.matlet.2007.03.018

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A single crystal of p-terphenyl grown from a melt (a) and an optical element made from it (b).

Download (243KB)
3. Fig. 2. X-ray diffraction pattern of a single-crystal sample (1) and a powder diffraction pattern (2) reconstructed based on the data of a single-crystal experiment [6].

Download (64KB)
4. Fig. 3. Transmission spectrum of a single-crystal p-terphenyl element.

Download (56KB)
5. Fig. 4. Absorption and PL spectra of a solution of p-terphenyl in cyclohexane and PL and X-ray spectra of a single crystal of p-terphenyl.

Download (151KB)

Copyright (c) 2024 Russian Academy of Sciences