Crystals of 4,7-bis(2,5-dimethyl-[1,1'-biphenyl]-4-yl)benzothiadiazole and Its Derivative with Terminal n-Hexyl Substitutes: Growth, Structure, Thermal and Absorption-Fluorescent Properties

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This study presents an investigation into the crystallization and absorptive-fluorescent properties of linear conjugated molecules derived from 2,1,3-benzothiadiazole, specifically 4,7-bis(2,5-dimethyl-[1,1'-biphenyl]-4-yl)benzothiadiazole (Ph-Xy-BTD) and 4,7-bis(4'-hexyl-2,5-dimethyl-[1,1'-biphenyl]-4-yl)benzothiadiazole (Hex-Ph-Xy-BTD). The synthesis of a new derivative of Hex-Ph-Xy-BTD is described. It was found that the presence of terminal n-hexyl substituents in Hex-Ph-Xy-BTD leads to a lower melting point, increased solubility and has a positive effect on crystallization compared to Ph-Xy-BTD. Single crystals of Hex-Ph-Xy-BTD were grown from hexane solution, and their structure was elucidated using single-crystal X-ray diffraction, confirming a monoclinic system (space group P21/c, Z = 4). Absorption and fluorescence spectra were obtained and analyzed for solutions in tetrahydrofuran as well as for the crystals of Ph-Xy-BTD and Hex-Ph-Xy-BTD, alongside investigations of quantum yield and fluorescence lifetime.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Postnikov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: postva@yandex.ru
Ресей, Moscow

N. Sorokina

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Ресей, Moscow

G. Yurasik

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Ресей, Moscow

Т. Сорокин

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Ресей, Moscow

A. Kylishov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Ресей, Moscow

M. Lyasnikova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Ресей, Moscow

V. Popova

Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences

Email: postva@yandex.ru
Ресей, Moscow

E. Svidchenko

Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences

Email: postva@yandex.ru
Ресей, Moscow

N. Surin

Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences

Email: postva@yandex.ru
Ресей, Moscow

O. Borshchev

Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences

Email: borshchev@ispm.ru
Ресей, Moscow

Әдебиет тізімі

  1. Skorotetcky M.S., Krivtsova E.D., Borshchev O.V. et al. // Dye. Pigment. 2018. V. 155. P. 284. https://doi.org/10.1016/j.dyepig.2018.03.043
  2. Taylor D., Malcomson T., Zhakeyev A. et al. // Org. Chem. Front. 2022. V. 9. P. 5473. https://doi.org/10.1039/d2qo01316a
  3. Kostyuchenko A.S., Uliankin E.B., Stasyuk A.J. et al. // J. Org. Chem. 2023. V. 88. P. 5875. https://doi.org/10.1021/acs.joc.3c00286
  4. Kono T., Kumaki D., Nishida J.I. // Chem. Mater. 2007. V. 19. P. 1218. https://doi.org/10.1021/cm062889+
  5. Bei Q., Zhang B., Wang K. et al. // Chinese Chem. Lett. 2024. V. 35. P. 108438. https://doi.org/10.1016/j.cclet.2023.108438
  6. Bhagyanath P.K., Angela M., Asit H. // Mater. Adv. 2024. V. 5. P. 3323. https://doi.org/10.1039/d4ma00068d
  7. Postnikov V.A., Sorokina N.I., Kulishov A.A. et al. // ACS Omega. 2024. V. 9. P. 14932. https://doi.org/10.1021/acsomega.3c08543
  8. Surin N.M., Svidchenko E.A., Skorotetskii M.S. et al. // Russ. J. Phys. Chem. A. 2024. V. 98. P. 448. https://doi.org/10.1134/S0036024424030294
  9. Постников В.А., Юрасик Г.А., Кулишов А.А. и др. // Кристаллография. 2021. Т. 66. С. 967. https://doi.org/10.31857/s0023476121060266
  10. Sonntag M., Strohriegl P. // Tetrahedron Lett. 2006. V. 47. P. 8313. https://doi.org/10.1016/j.tetlet.2006.09.089
  11. Постников В.А., Сорокина Н.И., Кулишов А.А. и др. // Кристаллография. 2023. Т. 68. С. 120. https://doi.org/10.31857/S0023476123010228
  12. Postnikov V.A., Sorokina N.I., Kulishov A.A. et al. // Acta Cryst. B. 2019. V. 75. P. 1076. https://doi.org/10.1107/S2052520619012484
  13. Rigaku Oxford Diffraction. CrysAlisPro Software System: 1.171.39.46. Rigaku Corporation, Oxford, UK, 2018.
  14. Petrícek V., Dušek M., Palatinus L. // Z. Kristallogr. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737
  15. Palatinus L. // Acta Cryst. A. 2004. V. 60. P. 604. https://doi.org/10.1107/S0108767304022433
  16. Demas J.N., Crosby G.A. // J. Phys. Chem. 1971. V. 75. P. 991. https://doi.org/10.1021/j100678a001
  17. Berlman I.B. Handbook of florescence spectra of Aromatic Molecules. 2d ed. N.Y.; London: Academic Press, 1971. 473 p.
  18. Уббелоде А.Р. Расплавленное состояние вещества. М.: Мир, 1969. 420 с.
  19. Kaminsky W. // J. Appl. Cryst. 2007. V. 40. P. 382. https://doi.org/10.1107/S0021889807003986

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Rice. 1. Synthesis scheme for Hex-Ph-Xy-BTD.

Жүктеу (57KB)
3. Fig. 2. DSC curves for Hex-Ph-Xy-BTD (1) and Ph-Xy-BTD (2).

Жүктеу (72KB)
4. Fig. 3. Ph-Xy-BTD crystals: on graph paper (a) and fluorescent image of a crystalline aggregate (b).

Жүктеу (337KB)
5. Fig. 4. Hex-Ph-Xy-BTD crystals: under UV illumination (a), confocal image of a faceted crystal (b) and its images in fluorescence mode (c) and in differential interference contrast mode (d).

Жүктеу (400KB)
6. Fig. 5. Conformation of the Hex-Ph-Xy-BTD molecule in the ORTEP representation with indication of torsion angles between conjugated groups (thermal ellipsoids with a probability level of 50%).

Жүктеу (152KB)
7. Fig. 6. Structure of Hex-Ph-Xy-BTD crystals: projection of the structure onto the (010) plane (a), projection of molecules in adjacent closest rows onto the (001) plane with the shortest H H and C-H π contacts indicated (b), diagram of the shortest contacts between nearest neighbors (c).

Жүктеу (399KB)
8. Fig. 7. Element of a crystalline monolayer in the orientation of the (100) plane (a) and software reconstruction of the Hex-Ph-Xy-BTD crystal habit (b).

Жүктеу (224KB)
9. Fig. 8. X-ray powder diffraction patterns for Ph-Xy-BTD (1) and Hex-Ph-Xy-BTD (2).

Жүктеу (84KB)
10. Fig. 9. Normalized absorption and fluorescence spectra of Ph-Xy-BTD (a) and Hex-Ph-Xy-BTD (b) in THF solution and in a thin polycrystalline film (without reabsorption). Selection of the absorption band of fluorescence centers (band I) in a thin polycrystalline film. Excitation was carried out in the long-wave absorption maximum.

Жүктеу (325KB)
11. Fig. 10. Normalized absorption and fluorescence spectra of Ph-Xy-BTD (a) and Hex-Ph-Xy-BTD (b) of thin (1) and bulk (2) crystals. Excitation was carried out at the long-wave absorption maximum.

Жүктеу (265KB)

© Russian Academy of Sciences, 2024