The temperature evolution of the atomic structure and the influence of the local environment of atoms on the optical properties of the NA2SIF6 crystal
- Autores: Dudka A.P.1, Karimov D.N.1, Golovina T.G.1, Konstantinova A.F.1
-
Afiliações:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Edição: Volume 69, Nº 5 (2024)
- Páginas: 821-833
- Seção: ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ
- URL: https://gynecology.orscience.ru/0023-4761/article/view/673724
- DOI: https://doi.org/10.31857/S0023476124050082
- EDN: https://elibrary.ru/ZDBNZY
- ID: 673724
Citar
Resumo
Crystals of sodium hexafluorosilicate Na2SiF6 millimeter size were grown by the hydrothermal method. According to X-ray diffraction analysis, it was revealed that Na2SiF6 samples are twinned according to the merohedral law and crystallize in sp. gr. P321 with unit cell parameters equal at 295 K <a> = 8.8582(12), <c> = 5.0396(11) Å, <V> = 342.47(17) Å3 on average the results of repeated measurements. A multi-temperature diffraction study of Na2SiF6 was carried out, based on the results of which the temperature dynamics of the optical properties of crystals was calculated. The structural similarity of Na2SiF6 crystals with crystals of the langasite family La3Ga5SiO14 was found. This made it possible to explain the optical activity of Na2SiF6 by considering electron density spirals similar to langasite, twisted around a triple axis of symmetry passing through the origin of the Na2SiF6 cell. The fractures in the temperature dependences of the refractive indices and rotation of the plane of polarization of light are explained by taking into account the anomalous features of interatomic interactions along the triple axis of the crystal cell passing through the Si2(2d) position with coordinates (1/3, 2/3, z). It was found that the main factor influencing the temperature dynamics of optical parameters is the Si2(2d)–F2(6g) distance, which increases abnormally with cooling.
Texto integral

Sobre autores
A. Dudka
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: tatgolovina@mail.ru
Rússia, 119333 Moscow
D. Karimov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: tatgolovina@mail.ru
Rússia, 119333 Moscow
T. Golovina
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Autor responsável pela correspondência
Email: tatgolovina@mail.ru
Rússia, 119333 Moscow
A. Konstantinova
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: tatgolovina@mail.ru
Rússia, 119333 Moscow
Bibliografia
- Zalkin A., Forrester J.D., Templeton D.H. // Acta Cryst. 1964. V. 17. P. 1408. https://doi.org/10.1107/S0365110X64003516
- Arianpour F., Arianpour A.C., Aali B. // Silicon. 2021. V. 13. P. 4381. https://doi.org/10.1007/s12633-020-00755-0
- Zhang W., Jing Q., Fang Yu., Chen Z. // Z. Anorg. Allg. Chem. 2017. V. 643. P. 1739. http://dx.doi.org/10.1002/zaac.201700322
- Lang T.-C., Han T., Peng L.-L., Tu M.-J. // Mater. Chem. Front. 2017. V. 1. P. 928. https://doi.org/10.1039/C6QM00284F
- Ha J., Novitskaya E., Lam N. et al. // J. Lumin. 2020. V. 218. P. 116835. https://doi.org/10.1016/j.jlumin.2019.116835
- Zhao J.-Y., Wang X.-G. // Appl. Phys. A. 2019. V. 125. P. 178. https://doi.org/10.1007/s00339-019-2468-1
- Beers W., Brik M., Ma C.-G. et al. // ECS J. Solid State Sci. Technol. 2024. https://doi.org/10.1149/2162-8777/ad561b
- Krasinski M.J., Prywer J. // J. Cryst. Growth. 2007. V. 303. P. 105. https://doi.org/10.1016/j.jcrysgro.2006.10.228
- Милль Б.В., Буташин А.В., Ходжабагян Г.Г. и др. // Докл. АН СССР. 1982. Т. 264. № 6. С. 1385.
- Mill B.V., Pisarevsky Yu.V. // Proc. 2000 IEEE/EIA Intern. Frequency Control Symp., Kansas City, Missouru, USA. P. 133.
- Максимов Б.А., Молчанов В.Н., Милль Б.В. и др. // Кристаллография. 2005. Т. 50. № 5. С. 813.
- Винчелл А.Н., Винчелл Г. Оптические свойства искусственных минералов. М.: Мир, 1967. 528 с.
- Shannon R.D., Shannon R.S., Medenbach O., Fischer R.X. // J. Phys. Chem. Ref. Data. 2002. V. 31. № 4. P. 931. https://doi.org/10.1063/1.1497384
- Батурина О.А., Гречушников Б.Н., Каминский А.А. и др. // Кристаллография. 1987. Т. 32. Вып. 2. С. 406.
- Cipriani C. // Period. Mineral. 1955. V. 24. P. 361.
- Piret P. // Bull. Soc. Chim. Belg. 1961. V. 70. P. 193.
- Schäfer G.F. // Z. Kristallogr. 1986. B. 175. S. 269. https://doi.org/10.1524/zkri.1986.175.3-4.269
- Дудка А.П. // Кристаллография. 2017. Т. 62. № 2. С. 202. https://doi.org/10.7868/S0023476117020102
- Marty K., Bordet P., Simonet V. et al. // Phys. Rev. B. 2010. V. 81. P. 054416. https://doi.org/10.1103/PhysRevB.81.054416
- Pikin S.A., Lyubutin I.S. // Phys. Rev. B. 2012. V. 86. Р. 064414. https://doi.org/10.1103/PhysRevB.86.064414
- Wang Z., Ji H., Zhang Z. et al. // J. Am. Ceram. Soc. 2021. V. 104. P. 5077. https://doi.org/10.1111/jace.17739
- Singh V.S., Moharil S.V. // Mater. Today Proc. 2020. V. 28. P. 37. https://doi.org/10.1016/j.matpr.2020.01.047
- Rigaku Oxford Diffraction, 2018, CrysAlisPro Software system, version 1.171.39.46, Rigaku Corporation, Oxford, UK.
- Dudka A. // J. Appl. Cryst. 2010. V. 43. № 6. P. 1440. https://doi.org/10.1107/S0021889810037131
- Petricek V., Dusek M., Palatinus L. // Z. Kristallogr. 2014. В. 229. № 5. S. 345. https://doi.org/10.1515/zkri-2014-1737
- Dudka A.P., Bolotina N.B., Khrykina O.N. // J. Appl. Cryst. 2019. V. 52. P. 690. https://doi.org/10.1107/S1600576719005818
- Glazer A.M. // J. Appl. Cryst. 2002. V. 35. P. 652. https://doi.org/10.1107/S0021889802013997
- Шубников А.В. Основы оптической кристаллографии. М.: Изд-во АН СССР, 1958. 207 с.
- Константинова А.Ф., Гречушников Б.Н., Бокуть Б.В., Валяшко Е.Г. Оптические свойства кристаллов. Минск: Наука и техника, 1995. 304 с.
- Бацанов С.С. Структурная рефрактометрия. М.: Высшая школа, 1976. 304 с.
- Константинова А.Ф., Головина Т.Г., Дудка А.П. // Кристаллография. 2018. Т. 63. № 2. С. 218. https://doi.org/10.7868/S0023476118020091
- Кизель В.А., Бурков В.И. Гиротропия кристаллов. М.: Наука, 1980. 304 с.
- Lowry T.M. Optical Rotatory Power. London: Longmans, Green and Co., 1935. 524 p.
- Araki N., Ohsato H., Kakimoto K. et al.// J. Eur. Ceram. Soc. 2007. V. 27. P. 4099. https://doi.org/10.1016/j.jeurceramsoc.2007.02.177
Arquivos suplementares
