The influence of submicron particles of photocatalytically active heavy metal oxides on the content of organic acids in the cultivation medium of filamentous biodestructors fungi
- 作者: Anikina N.A.1, Shirokov Y.L.1, Smirnova O.N.1, Smirnov V.F.1, Shishkin A.Y.1
-
隶属关系:
- Lobachevsky State University
- 期: 卷 59, 编号 1 (2025)
- 页面: 45-54
- 栏目: ФИЗИОЛОГИЯ, БИОХИМИЯ, БИОТЕХНОЛОГИЯ
- URL: https://gynecology.orscience.ru/0026-3648/article/view/681165
- DOI: https://doi.org/10.31857/S0026364825010068
- EDN: https://elibrary.ru/srlkrq
- ID: 681165
如何引用文章
详细
The effect of submicron particles of heavy metal oxides WO3, CsTeMoO6 и RbTe1.5W0.5O6 with photocatalytic activity on the content of organic acids in the culture medium of fungi Aspergillus niger, Chaetomium globosum, Penicillium chrysogenum was studied. It has been shown that submicron particles WO3, CsTeMoO6 и RbTe1.5W0.5O6 are able to influence the concentration and composition of organic acids produced by the studied biodestructor fungi both in darkness and under the influence of light, and the effect is multidirectional. In a number of experimental variants, a decrease in the content of individual organic acids in the culture medium of the studied fungi was observed. At the same time, under the action of CsTeMoO6, the concentration of lactic acid in the culture medium of Aspergillus niger increased many times. A similar trend was observed for succinic acid in the case of Penicillium chrysogenum under the action of RbTe1.5W0.5O6 and Chaetomium globosum under the action of CsTeMoO6 in dark conditions. It was noted that in some cases, under the action of the studied particles, there was an absence of individual organic acids in the mushroom culture medium compared with the control. A decrease in the content of organic acids in the culture medium in both dark and light conditions for all fungi was observed only in the case of WO3. In most cases, the studied biocides, both in the dark and in the light, caused a decrease in the total content of organic acids in the culture medium. This allows us to talk about the inhibition of acid formation processes in fungi by these compounds, which explains the expediency of using them as a means of protecting materials from microbiological damage caused by microscopic fungi.
全文:

作者简介
N. Anikina
Lobachevsky State University
编辑信件的主要联系方式.
Email: undinaf@gmail.com
俄罗斯联邦, Nizhny Novgorod, 603022
Ya. Shirokov
Lobachevsky State University
Email: yarshirokov@gmail.com
俄罗斯联邦, Nizhny Novgorod, 603022
O. Smirnova
Lobachevsky State University
Email: protectfun@mail.ru
俄罗斯联邦, Nizhny Novgorod, 603022
V. Smirnov
Lobachevsky State University
Email: biodeg@mail.ru
俄罗斯联邦, Nizhny Novgorod, 603022
A. Shishkin
Lobachevsky State University
Email: uandshi@yandex.ru
俄罗斯联邦, Nizhny Novgorod, 603022
参考
- Azam A., Ahmed A.S., Oves M. et al. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int. J. Nanomedicine. 2012. V. 7. P. 6003–6009. https://doi.org/10.2147/IJN.S35347
- Cao C.N., Thi T.L.N., Thi T.H.D. et al. Identification and glass biodeterioration of Chaetomium globosum TTHF1–3 isolated from optical instrument at Thai Hoa, Nghe An province. VNU Journal of Science: Natural Sciences and Technology. 2021. V. 37 (4). P. 104–112. https://doi.org/10.25073/2588-1140/vnunst.5315
- Cruz-Luna A.R., Cruz-Martínez H., Vásquez-López A. et al. Metal nanoparticles as novel antifungal agents for sustainable agriculture: Current advances and future directions. J. Fungi. 2021. V. 7 (12). 1033. https://doi.org/10.3390/jof7121033
- Fukina D.G., Koryagin A.V., Koroleva A.V. et al. Photocatalytic properties of β-pyrochlore RbTe1.5W0.5O6 under visible-light irradiation. J. Solid State Chem. 2021. V. 300. P. 122235. https://doi.org/10.1016/j.jssc.2021.122235
- Fukina D.G., Koryagin A.V., Koroleva A.V. et al. The role of surface and electronic structure features of the CsTeMoO6 β-pyrochlore compound during the photooxidation dyes process. J. Solid State Chem. 2022a. V. 308. P. 122235. https://doi.org/10.1016/j.jssc.2022.122939
- Fukina D.G., Koryagin A.V., Volkova N.S. et al. Features of the electronic structure and photocatalytic properties under visible light irradiation for RbTe1.5W0.5O6 with β-pyrochlore structure. Solid State Sciences. V. 126. 2022b. P. 106858. https://doi.org/10.1016/j.solidstatesciences.2022.106858
- Hao X., Yang K., Zhang D. et al. Insight into degrading effects of two fungi on polyurethane coating failure in a simulated atmospheric environment. Polymers. 2023. V. 15 (2). P. 328. https://doi.org/10.3390/polym15020328
- Jiang L., Pettitt T.R., Buenfeld N. et al. A critical review of the physiological, ecological, physical and chemical factors influencing the microbial degradation of concrete by fungi. Build. Environ. 2022. 2022. Art. 108925. https://doi.org/10.1016/j.buildenv.2022.108925
- Jiao W., Liu X., Li Y. et al. Organic acid, a virulence factor for pathogenic fungi, causing postharvest decay in fruits. Mol. Plant Pathol. 2022. V. 23 (2). P. 304–312. https://doi.org/10.1111/mpp.13159
- Kobzar A.I. Applied mathematical statistics. Fizmatlit, Moskva. 2006. (In Russ.)
- Kubicek C.P., Punt P., Visser J. Production of organic acids by filamentous fungi. In: M. Hofrichter (ed.). Industrial applications. The Mycota, V. 10. Springer, Berlin, Heidelberg, 2011, pp. 215–234.
- Magnuson J.K., Lasure L.L. Organic acid production by filamentous fungi. Advances in fungal biotechnology for industry, agriculture, and medicine. In: J.S. Tkacz, L. Lange (eds). Advances in fungal biotechnology for industry, agriculture, and medicine. Springer, Boston, 2004, pp. 307–340.
- Meher S.R. Transition metal oxide-based materials for visible-light-photocatalysis. In: Nanostructured materials for visible light photocatalysis. 2022. P. 153–183. https://doi.org/10.1016/B978-0-12-823018-3.00021-X
- Prakash J., Krishna S.B.N., Kumar P. et al. Recent advances on metal oxide based nano-photocatalysts as potential antibacterial and antiviral agents. Catalysts. 2022. 12. Art. 1047. https://doi.org/10.3390/catal12091047
- Rybakov Yu.A. Test cultures of micromycetes for studying antimycotics and evaluating the fungal resistance of industrial materials. Biotekhnologiya. 2022. V. 38 (6). P. 101–111. (In Russ.) https://doi.org/10.56304/S0234275822060114
- Semenycheva L.L., Smirnov V.F., Smirnova O.N. et al. Antimicrobial effect of submicron complex oxide particles CsTeMoO6 under visible light. Appl. Sci. (Switzerland). 2024. V. 14 (2). P. 889. https://doi.org/10.3390/app14020889
- Shishkin A. Yu., Smirnov V.F., Shalaginova I.A. et al. Antifungal activity of submicrometer particles of complex metal oxides with photocatalytic activity. Microbiology. 2024. V. 93. P. 511–515. https://doi.org/10.1134/S0026261723605067
- Slavin Y.N., Bach H. Mechanisms of antifungal properties of metal nanoparticles. Nanomaterials (Basel). 2022. V. 12 (24). Art. 4470. https://doi.org/10.3390/nano1224447
- Smirnov V.F., Shishkin A. Yu., Smirnova O.N. et al. Study of the antimicrobial activity of submicron particles of metal oxides based on tungsten under light and dark exposure conditions. Nanobiotechnol. Reports. 2022. V. 17 (2). P. 235–243. https://doi.org/10.1134/S2635167622020161
- Smirnov V.F., Smirnova O.N., Anikina N.A. et al. The effect of biocides on the content of organic acids in fungi that destruct technical products used in tropical climates (Vietnam). Corrosion: materials, protection. 2020. № 6. P. 39– 48. (In Russ.) https://doi.org/10.31044/1813-7016-2020-0-6-39-48
- Sukharevich V.I. Protection against biological damage caused by fungi. SPb., 2009. (In Russ.).
- Tamilselvi R., Kalaiarasi M., Elumalai M. et al. Antimicrobial activity of metal oxide nanoparticles. Biomed. Pharmacol. J. 2024. V. 17 (3). P. 1757–1767. https://dx.doi.org/10.13005/bpj/2981
- Vlasov A.D., Sazanova K.V., Hosid E.G. et al. Experience of using antifungal Rocima GT for protection of paper from biological damage caused by fungi. Appl. Microbiol. 2022. V. 2. P. 185–196. https://doi.org/10.3390/applmicrobiol2010013
- Wierckx N., Agrimi G., Lübeck P.S., Steiger et al. Metabolic specialization in itaconic acid production: a tale of two fungi. Current Opin. Biotechnol. 2020. V. 62. P. 153–159. https://doi.org/10.1016/j.copbio.2019.09.014
- Кобзарь А.И. (Kobzar) Прикладная математическая статистика. М.: Физматлит, 2006. 816 с.
- Рыбаков Ю.А. (Rybakov) Тест-культуры микромицетов для проведения исследований антимикотиков и оценки грибостойкости промышленных материалов. Биотехнология. 2022. T. 38 (6). C. 101–111.
- Смирнов В.Ф., Смирнова О.Н., Аникина Н.А. и др. (Smirnov et al.) Действие биоцидов на содержание органических кислот у грибов-деструкторов технических изделий, эксплуатируемых в условиях тропического климата (Вьетнам). Коррозия: материалы, защита. 2020. № 6. С. 39–48.
- Сухаревич В.И. (Sukharevich) Защита от биоповреждений, вызываемых грибами. СПб.: ЭЛБИ-СПб, 2009. 207 с.
补充文件
