Expression of the Curvularia sp. P450 Monooxygenase Gene in Escherichia coli and Confirmation of Its 7-Hydroxylation Function

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The diversity and uniqueness of fungal cytochromes P450 (CYP), capable of catalyzing the regio- and stereospecific hydroxylation of steroids, makes them important for microbiological synthesis of valuable hydroxysteroids. In the present work, the function of recombinant fungal P450 monooxygenase (CYPI) of Curvularia sp. strain VKM F-3040, a promising biocatalyst of 7-hydroxylation of androstane steroids, was studied. RT-PCR amplification of cDNA of the candidate CYPI gene and of the gene of its natural redox partner (POR), their cloning and heterologous expression in the cells of E. coli BL 21 DE(3) was carried out. In vitro experiments showed the ability of the obtained recombinant monooxygenase to catalyze hydroxylation of dehydroepiandrosterone at positions 7α and 7β. Our results expand the knowledge about fungal steroid hydroxylases and open up the prospects for the synthesis of valuable 7-hydroxysteroids by using recombinant producers.

Texto integral

Acesso é fechado

Sobre autores

V. Kollerov

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”

Autor responsável pela correspondência
Email: svkollerov@rambler.ru
Rússia, Pushchino, 142290

S. Tarlachkov

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”

Email: svkollerov@rambler.ru
Rússia, Pushchino, 142290

A. Shutov

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”

Email: svkollerov@rambler.ru
Rússia, Pushchino, 142290

M. Donova

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”

Email: svkollerov@rambler.ru
Rússia, Pushchino, 142290

Bibliografia

  1. Kristan K., Rižner T.L. Steroid-transforming enzymes in fungi // J. Steroid. Biochem. Mol. Biol. 2012. V. 129. P. 79–91.
  2. https://doi.org/10.1016/j.jsbmb.2011.08.012
  3. Nassiri-Koopaei N., Faramarzi M.A. Recent developments in the fungal transformation of steroids // Biocatal. Biotransform. 2015. V. 33. P. 1–28.
  4. https://doi.org/10.3109/10242422.2015.1022533
  5. Kollerov V., Shutov A., Kazantsev A., Donova M. Biotransformation of androstenedione and androstadienedione by selected Ascomycota and Zygomycota fungal strains // Phytochem. 2020. V. 169. Art. 112160. https://doi.org/10.1016/j.phytochem.2019.112160
  6. Kollerov V., Shutov A., Kazantsev A., Donova M. Steroid modification by filamentous fungus Drechslera sp.: Focus on 7-hydroxylase and 17β-hydroxysteroid dehydrogenase activities // Fungal Biol. 2022. V. 126. P. 91‒100.
  7. https://doi.org/10.1016/j.funbio.2021.11.002
  8. Kollerov V.V., Tarlachkov S.V., Donova M.V. De novo transcriptome assembly of Curvularia sp. VKM F-3040, a promising steroid-modifying ascomycete // Microbiol. Resour. Announc. 2023.
  9. https://doi.org/10.1128/MRA.00663-23
  10. Črešnar B., Petrič Š. Cytochrome P450 enzymes in the fungal kingdom // Biochim. Biophys. Acta. 2011. V. 1814. P. 29–35.
  11. https://doi.org/10.1016/j.bbapap.2010.06.020
  12. Sánchez-Rodríguez A., Portal O., Rojas L.E., Ocaña B., Mendoza M., Acosta M., Jiménez E., Höfte M. An efficient method for the extraction of high-quality fungal total RNA to study the Mycosphaerella fijiensis-Musa spp. interaction // Mol. Biotechnol. 2008. V. 40. P. 299‒305.
  13. https://doi.org/10.1007/s12033-008-9092-1
  14. Lu W., Feng J., Chen X., Bao Y.J., Wang Y., Wu Q., Ma Y., Zhu D. Distinct regioselectivity of fungal P450 enzymes for steroidal hydroxylation // Appl. Environ. Microbiol. 2019. V. 85. Art. e01182–19.
  15. https://doi.org/10.1128/AEM.01182-19

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Visualization of PCR products of the CYPI(a) and POR(b) genes amplified using the first chain of cDNA and recombinant plasmid pET-22b(+)-CYPI(c) and pET-22b(+)-POR(d) as a matrix after treatment with NdeI restriction endonucleases/NotI and EcoRI/NotI, respectively; gel electrophoresis on 0.8% agarose (120 V; 40 min) with ethidium bromide staining; M — DNA marker (~0.5 mcg).

Baixar (95KB)
3. Fig. 2. TLC profile of samples of the transformation liquid of the DHEA bioconversion (0.1 g/l) with sediment R20 000 (variants 1, 3) and supernatant S20 000 (variants 2, 4) obtained from the homogenate of destroyed recombinant E. coli BL 21 DE(3)-pET-22b(+) cells bearing an empty vector (variants 1, 2) and a homogenate of destroyed recombinant E. coli BL 21 DE(3)-pET-22b(+)-CYPI and E. coli BL 21 DE(3)-pET-22b(+)-POR cells carrying the target genes CYPI and POR, respectively (variants 3 4) (72 hours of transformation); C is a mixture of standard steroids at the point (from top to bottom): DHEA (2 mcg), androstenediol (3 mcg), 7β-OH-DHEA (2 mcg), 7α-OH-DHEA (2 mcg) (a); Comparative HPLC analysis of compounds I and II with control samples 7β-OH-DHEA (b) and 7α-OH-DHEA (c).

Baixar (171KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024