Low CO2 footprint remediation of oil-contaminated soil in a sediment microbial fuel cell
- Authors: Klyushin G.S.1, Gogov A.S.1,2, Kolonsky A.E.1,3, Stroeva A.R.4, Elizarov I.M.1, Klyukina A.A.1, Gavrilov S.N.1
-
Affiliations:
- Federal Research Center of Biotechnology of the Russian Academy of Sciences
- National Research Center “Kurchatov Institute”
- Skolkovo Institute of Science and Technology
- Lomonosov Moscow State University
- Issue: Vol 94, No 2 (2025)
- Pages: 111-131
- Section: EXPERIMENTAL ARTICLES
- URL: https://gynecology.orscience.ru/0026-3656/article/view/680834
- DOI: https://doi.org/10.31857/S0026365625020019
- ID: 680834
Cite item
Abstract
Abstract. Active study of electrocatalytic properties of prokaryotes in the last 30 years has led to the creation of a new field of biotechnology – electricity generation in microbial fuel or electrolytic cells, where microbial cells act as biocatalysts of anodic or cathodic processes consuming organic matter or forming biomass and substances with added value during electrotrophic fixation of CO2. The most economically promising is the use of microbial fuel cells (MFC) for wastewater treatment and in bioremediation processes. Recently, the prospects for the introduction of MFC or stimulation of electroactive microbial communities for the purification of oil-contaminated anaerobic layers of soils and marine sediments have been considered. However, this version of the technology has a number of significant technical limitations. We describe a laboratory sedimentary MFC with a bioanode and biocathode inoculated with oil-contaminated soil, which for 210 days of continuous operation was the only source of power supply for an autonomous sensor for monitoring ambient air parameters. Electric current generation in the MFC was accompanied by the destruction of hydrocarbons in contaminated soil and the formation of various microbial populations in the anaerobic soil layer, at the anode and at the cathode, in which potential oil destructors, electrogens and electrotrophs dominated, respectively. At the same time, the release of CO2 against the background of ambient air was minimal, which indicates the formation of an effective gas filter in the MFC. Short-term incubation of the MFC in field conditions revealed a significant effect of temperature fluctuations on the physicochemical parameters of the device, its performance and the composition of the cathode microbial population. We consider in detail the changes in the phylogenetic and physiological diversity of microbial populations of different zones of the sedimentary MFC during its operation, and also outline the prospects and problems of the practical application of such systems for bioremediation of oil-contaminated soil.
Full Text

About the authors
G. S. Klyushin
Federal Research Center of Biotechnology of the Russian Academy of Sciences
Email: sngavrilov@gmail.com
S.N. Winogradsky Institute of Microbiology
Russian Federation, 119071, MoscowA. S. Gogov
Federal Research Center of Biotechnology of the Russian Academy of Sciences; National Research Center “Kurchatov Institute”
Email: sngavrilov@gmail.com
S.N. Winogradsky Institute of Microbiology
Russian Federation, 119071, Moscow; 123098, MoscowA. E. Kolonsky
Federal Research Center of Biotechnology of the Russian Academy of Sciences; Skolkovo Institute of Science and Technology
Email: sngavrilov@gmail.com
S.N. Winogradsky Institute of Microbiology, Center for Molecular and Cellular Biology
Russian Federation, 119071, Moscow; 121205, MoscowA. R. Stroeva
Lomonosov Moscow State University
Email: sngavrilov@gmail.com
Faculty of Biology
Russian Federation, 119234, MoscowI. M. Elizarov
Federal Research Center of Biotechnology of the Russian Academy of Sciences
Email: sngavrilov@gmail.com
S.N. Winogradsky Institute of Microbiology
Russian Federation, 119071, MoscowA. A. Klyukina
Federal Research Center of Biotechnology of the Russian Academy of Sciences
Email: sngavrilov@gmail.com
S.N. Winogradsky Institute of Microbiology
Russian Federation, 119071, MoscowS. N. Gavrilov
Federal Research Center of Biotechnology of the Russian Academy of Sciences
Author for correspondence.
Email: sngavrilov@gmail.com
S.N. Winogradsky Institute of Microbiology
Russian Federation, 119071, MoscowReferences
- Атлас почв Российской Федерации. https://soil-db.ru/soilatlas/razdel-3-pochvy-rossiyskoy-federacii/chernozemy-vyshchelochennye-i-opodzolennye?ysclid=m2ask93lwv52646867. Accessed November 8, 2024.
- Губернский Ю. Д., Калинина Н. В., Гапонова Е. Б., Банин И. М. Обоснование допустимого уровня содержания диоксида углерода в воздухе помещений жилых и общественных зданий // Гигиена и санитария. 2014. Т. 6. С. 37–41.
- Кулагина Г. М., Кулагин С. С., Ключникова М. Ю. Мониторинг нефтяного загрязнения Винновской рощи // Успехи современного естествознания. 2012. № 10. С. 90.
- Меркель А. Ю., Тарновецкий И. Ю., Подосокорская О. А., Тощаков С. В. Анализ систем праймеров на ген 16S рРНК для профилирования термофильных микробных сообществ // Микробиология. 2019. Т. 88. С. 671–680. https://doi.org/10.1134/S0026365619060119
- Merkel A. Y., Tarnovetskii I. Y., Podosokorskaya O. A., Toshchakov S. V. Analysis of 16S rRNA primer systems for profiling of thermophilic microbial communities // Microbiology (Moscow). 2019. V. 88. P. 671–680. https://doi.org/10.1134/S0026261719060110
- Соколова Т. А., Толпешта И. И., Трофимов С. Я. Почвенная кислотность. Кислотно-основная буферность почв. Соединения алюминия в твердой фазе почвы и в почвенном растворе. Тула: Гриф и К, 2012. 124 с.
- Фёдорова Ю. А., Ахметова Г. И., Коржова Л. Ф., Ягафарова Г. Г. Изучение биодеструкции органических поллютантов ароматического ряда // Вестн. технологического университета. 2017. Т. 20. С. 143–146.
- Ambaye T. G., Vaccari M., Franzetti A., Prasad S., Formicola F., Rosatelli A., Hassani A., Aminabhavi T. M., Rtimi S. Microbial electrochemical bioremediation of petroleum hydrocarbons (PHCs) pollution: Recent advances and outlook // Chem. Engin. J. 2023. V. 452. Art. 139372. https://doi.org/10.1016/j.cej.2022.139372
- Anaerobic utilization of hydrocarbons, oils, and lipids. Handbook of hydrocarbon and lipid microbiology / Ed. Boll M. Springer, Cham. 2020. https://doi.org/10.1007/978-3-319-50391-2.
- Braun A., Spona-Friedl M., Avramov M., Elsner M., Baltar F., Reinthaler T., Herndl G. J., Griebler C. Reviews and syntheses: heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling // Biogeosci. 2021. V. 18. P. 3689–3700. https://doi.org/10.5194/bg-18-3689-2021
- Carlson H. K., Iavarone A. T., Gorur A., Yeo B. S., Tran R., Melnyk R. A., Mathies R. A., Auer M., Coates J. D. Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 1702–1707. https://doi.org/10.1073/pnas.1112905109
- Chen H., Simoska O., Lim K., Grattieri M., Yuan M., Dong F., Lee Y. S., Beaver K., Weliwatte S., Gaffney E. M., Minteer S. D. Fundamentals, applications, and future directions of bioelectrocatalysis // Chem. Rev. 2020. V. 120. P. 12903–12993. https://doi.org/10.1021/acs.chemrev.0c00472
- Douglas G. M., Maffei V. J., Zaneveld J. R., Yurgel S. N., Brown J. R., Taylor C. M., Huttenhower C., Langille M. G.I. PICRUSt2 for prediction of metagenome functions // Nat. Biotechnol. 2020. V. 38. P. 685–688. https://doi.org/10.1038/s41587-020-0548-6
- Erable B., Etcheverry L., Bergel A. From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater // Biofouling. 2011. V. 27. P. 319–326. https://doi.org/10.1080/08927014.2011.564615
- Gohl D. M., MacLean A., Hauge A., Becker A., Walek D., Beckman K. B. An optimized protocol for high- throughput amplicon-based microbiome profiling // Protoc. Exch. 2016. https://doi.org/10.1038/protex.2016.030
- Hugerth L. W., Wefer H. A., Lundin S., Jakobsson H. E., Lindberg M., Rodin S., Engstrand L., Andersson A. F. DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies // Appl. Environ. Microbiol. 2014. V. 80. P. 5116–5123. https://doi.org/10.1128/AEM.01403-14
- Karstens L., Asquith M., Davin S., Fair D., Gregory W. T., Wolfe A. J., Braun J., McWeeney S. Controlling for contaminants in low-biomass 16S rRNA gene sequencing experiments // mSystems. 2019. V. 4. Art. e00290-19. https://doi.org/10.1128/mSystems.00290-19
- Lahti L., Shetty S. Microbiome R package. https://bioconductor.org/packages/release/bioc/html/microbiome.html. Accessed August, 2024.
- Logan B. E., Rossi R., Ragab A., Saikaly P. E. Electroactive microorganisms in bioelectrochemical systems // Nat. Rev. Microbiol. 2019. V. 17. P. 307–319. https://doi.org/10.1038/s41579-019-0173-x
- Lovley D. R., Holmes D. E. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms // Nat. Rev. Microbiol. 2022. V. 20. P. 5–19. https://doi.org/10.1038/s41579-021-00597-6
- Lovley D. R., Holmes D. E., Nevin K. P. Dissimilatory Fe(III) and Mn(IV) reduction // Adv. Microb. Physiol. 2004. V. 49. P. 219–286. https://doi.org/10.1016/S0065-2911(04)49005-5
- Lusk B. G. Thermophiles; or, the modern Prometheus: the importance of extreme microorganisms for understanding and applying extracellular electron transfer // Front. Microbiol. 2019. V. 10. Art. 818. https://doi.org/10.3389/fmicb.2019.00818
- Marshall C. W., May H. D. Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica // Energy Environ. Sci. 2009. V. 2. P. 699–705. https://doi.org/10.1039/b823237g
- Matturro B., Viggi C. C., Aulenta F., Rossetti S. Cable bacteria and the bioelectrochemical snorkel: the natural and engineered facets playing a role in hydrocarbons degradation in marine sediments // Front. Microbiol. 2017. V. 8. Art. 952. https://doi.org/10.3389/fmicb.2017.00952
- Ntarlagiannis D., Atekwana E. A., Hill E. A., Gorby Y. Microbial nanowires: is the subsurface ‘‘hardwired’’? // Geophys. Res. Lett. 2007. V. 34. Art. L17305. https://doi.org/10.1029/2007GL030426
- Oksanen J. Vegan: Community Ecology Package. R package. https://cran.r-project.org/web/packages/vegan. Accessed August 17, 2024.
- Package ‘ggvenn’. https://cran.r-project.org/web/packages/ggvenn/ggvenn.pdf. Accessed August 17, 2024.
- Peters K. E., Moldowan J. M. The Biomarker Guide: Interpreting molecular fossils in petroleum and ancient sediment. Prentice Hall: Englewood Cliffs, NJ. 1993. P. 40–45.
- Rogińska J., Perdicakis M., Midoux C., Bouchez T., Despas C., Liu L., Tian J.-H., Chaumont C., Jorand F. P.A., Tournebize J., Etienne M. Electrochemical analysis of a microbial electrochemical snorkel in laboratory and constructed wetlands // Bioelectrochem. 2021. V. 142. Art. 107895. https://doi.org/10.1016/j.bioelechem.2021.107895
- Shi L., Dong H., Reguera G., Beyenal H., Lu A., Liu J., Yu H. Q., Fredrickson J. K. Extracellular electron transfer mechanisms between microorganisms and minerals // Nat. Rev. Microbiol. 2016. V. 14. P. 651–662. https://doi.org/10.1038/nrmicro.2016.93
- Wang L. Y., Nevin K. P., Woodard T. L., Mu B. Z., Lovley D. R. Expanding the diet for DIET: electron donors supporting direct interspecies electron transfer (DIET) in defined co-cultures // Front. Microbiol. 2016. V. 7. Art. 236. https://doi.org/10.3389/fmicb.2016.00236
- Yamamoto M., Takaki Y., Kashima H., Tsuda M., Tanizaki A., Nakamura R., Takai K. In situ electrosynthetic bacterial growth using electricity generated by a deep-sea hydrothermal vent // ISME J. 2023. V. 17. P. 12–20. https://doi.org/10.1038/s41396-022-01316-6
Supplementary files
