New micromycetes strains with keratinolytic activity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Abstract. The ability of the micromycete Tolypocladium inflatum to synthesize keratinolytic enzymes has been demonstrated for the first time. 22 strains of micromycetes isolated from enrichment cultures of keratinolytic microorganisms belonged to the genera Aspergillus, Cladosporium, Fusarium, Keratinophyton, Penicillium, Pseudallscheria, Tolypocladium and Trichoderma. Only two strains showed high keratinolytic activity during submerged fermentation – Keratinophyton terreum C106 (74.2 E) and Tolypocladium inflatum ST1 (87.1 E). The target activity of K. terreum C106 in submerged culture decreased almost to zero by the 7th day of cultivation, while the activity of T. inflatum ST1 decreased by less than 20%. An extracellular protease with keratinolytic activity from the micromycete T. inflatum ST1 with a pI of about 5.6 and a molecular weight of about 31 kDa was isolated.

全文:

受限制的访问

作者简介

S. Timorshina

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: timorshina.svetlana@mail.ru
俄罗斯联邦, Moscow, 119234

E. Ganetskaya

Lomonosov Moscow State University

Email: timorshina.svetlana@mail.ru
俄罗斯联邦, Moscow, 119234

A. Shestakova

Lomonosov Moscow State University; National Research University “Higher School of Economics”

Email: timorshina.svetlana@mail.ru
俄罗斯联邦, Moscow, 119234; Moscow, 101000

V. Lyamina

Lomonosov Moscow State University

Email: timorshina.svetlana@mail.ru
俄罗斯联邦, Moscow, 119234

A. Aleksandrova

Lomonosov Moscow State University

Email: timorshina.svetlana@mail.ru
俄罗斯联邦, Moscow, 119234

E. Popova

Lomonosov Moscow State University

Email: timorshina.svetlana@mail.ru
俄罗斯联邦, Moscow, 119234

G. Admanova

Aktobe Regional University named after K. Zhubanova

Email: timorshina.svetlana@mail.ru
哈萨克斯坦, Aktobe, 030000

A. Osmolovsky

Lomonosov Moscow State University

Email: timorshina.svetlana@mail.ru
俄罗斯联邦, Moscow, 119234

参考

  1. Фокичев Н. С., Корниенко Е. И., Крейер В. Г., Шаркова Т. С., Осмоловский А. А. Тромболитический потенциал и свойства протеиназ – активаторов плазминогена, образуемых микромицетом Тolypocladium inflatum k1 // Микология и фитопатология. 2021. Т. 55. № 6. С. 446–452.
  2. Barrios-González J., Tarragó-Castellanos M. R. Solid-state fermentation: special physiology of fungi // Fungal metabolites. Reference series in phytochemistry / Eds. Mérillon J. M., Ramawat K. Cham: Springer, 2017. P. 319–347. https://doi.org/10.1007/978-3-319-25001-4_6
  3. Bensch K., Braun U., Groenewald J. Z., Crous P. W. The genus Cladosporium // Stud. Mycol. 2012. V. 72. P. 1–401.
  4. Bhari R., Kaur M. Fungal keratinases: enzymes with immense biotechnological potential // Fungal resources for sustainable economy / Eds. Singh I., Rajpal V. R., Navi S. S. Singapore: Springer, 2023. P. 89–125. https://doi.org/10.1007/978-981-19-9103-5_4
  5. Carbone I., Kohn L. M. A method for designing primer sets for speciation studies in filamentous Ascomycetes // Mycologia. 1999. V. 91. P. 553–556. https://doi.org/10.2307/3761358
  6. Crous P. W., Lombard L., Sandoval-Denis M., Seifert K. A., Schroers H. J., Chaverri P., Thines M. Fusarium: more than a node or a foot-shaped basal cell // Stud. Mycol. 2021. V. 98. Art. 100116.
  7. de Menezes C. L.A., Santos R. D.C., Santos M. V., Boscolo M., da Silva R., Gomes E., da Silva R. R. Industrial sustainability of microbial keratinases: production and potential applications // World J. Microbiol. Biotechnol. 2021. V. 37. Art. 86. https://doi.org/10.1007/s11274-021-03052-z
  8. de Souza P. M., Bittencourt M. L., Caprara C. C., de Freitas M., de Almeida R. P., Silveira D., Fonseca Y. M., Ferreira Filho E. X., Pessoa Junior A., Magalhães P. O. A biotechnology perspective of fungal proteases // Braz. J. Microbiol. 2015. V. 46. P. 337–346. https://doi.org/10.1590/S1517-838246220140359
  9. Dong Q. Y., Wang Y., Wang Z. Q., Liu Y. F., Yu H. Phylogeny and systematics of the genus Tolypocladium (Ophiocordycipitaceae, Hypocreales) // J. Fungi. 2022. V. 8. Art. 1158.
  10. El-Gendi H., Saleh A. K., Badierah R., Redwan E. M., El-Maradny Y.A., El-Fakharany E.M. A comprehensive insight into fungal enzymes: structure, classification, and their role in mankind’s challenges // J. Fungi (Basel). 2021. V. 8. Art. 23. https://doi.org/10.3390/jof8010023
  11. Evans K. L., Crowder J., Miller E. S. Subtilisins of Bacillus spp. hydrolyze keratin and allow growth on feathers // Can. J. Microbiol. 2000. V. 46. P. 1004–1011. https://doi.org/10.1139/w00-085
  12. Fang Z., Yong Y. C., Zhang J., Du G., Chen J. Keratinolytic protease: a green biocatalyst for leather industry // Appl. Microbiol. Biotechnol. 2017. V. 101. P. 7771–7779. https://doi.org/10.1007/s00253-017-8484-1
  13. Fokichev N. S., Kokaeva L. Yu., Popova E. A., Kurakov A. V., Osmolovskiy A. A. Thrombolytic Potential of micromycetes from the genus Tolypocladium, obtained from White Sea soils: screening of producers and exoproteinases properties // Microbiol. Res. 2022. V. 13. P. 898–908. https://doi.org/10.3390/microbiolres13040063
  14. Food and indoor fungi. CBS Laboratory manual series 2 / Eds. Samson R. A., Houbraken J., Thrane U., Frisvad J. C., Andersen B. Utrecht, Netherlands: CBS-KNAW Fungal Biodiversity Centre, 2010. 390 p.
  15. Fungal biodiversity. CBS Laboratory manual series 1 / Eds. Crous P. W., Verkley G. J.M., Groenewald J. Z., Samson R. A. Utrecht, Netherlands: CBS-KNAW Fungal Biodiversity Centre, 2009. 270 p.
  16. Glass N. L., Donaldson G. C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes // Appl. Environ. Microbiol. 1995. V. 61. P. 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  17. Houbraken J., Frisvad J. C., Samson R. A. Taxonomy of Penicillium section Citrina // Stud. Mycol. 2011. V. 70. P. 53–138.
  18. Kanth S. V., Venba R., Madhan B., Chandrababu N. K., Sadulla S. Studies on the influence of bacterial collagenase in leather dyeing // Dye Pigment. 2008. V. 76. P. 338–347.
  19. Khosravi A. R., Mahdavi Omran S., Shokri H., Lotfi A., Moosavi Z. Importance of elastase production in development of invasive aspergillosis // J. Mycol. Med. 2012. V. 22. P. 167–172. https://doi.org/10.1016/j.mycmed.2012.03.002
  20. Kothary M. H., Chase Jr. T., Macmillan J. D. Correlation of elastase production by some strains of Aspergillus fumigatus with ability to cause pulmonary invasive aspergillosis in mice // Infect. Immun. 1984. V. 43. P. 320–325. https://doi.org/10.1128/iai.43.1.320‐325.1984
  21. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35. P. 1547–1549. https://doi.org/10.1093/molbev/msy096
  22. Kurtzman C. P., Robnett C. J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences // Antonie van Leeuwenhoek. 1998. V. 73. P. 331–371. https://doi.org/10.1023/A:1001761008817
  23. Labuda R., Bernreiter A., Hochenauer D., Kubátová A., Kandemir H., Schüller C. Molecular systematics of Keratinophyton: the inclusion of species formerly referred to Chrysosporium and description of four new species // IMA Fungus. 2021. V. 12. Art. 17. https://doi.org/10.1186/s43008-021-00070-2
  24. Oda K., Kakizono D., Yamada O., Iefuji H., Akita O., Iwashita K. Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions // Appl. Environ. Microbiol. 2006. V. 72. P. 3448–3457. https://doi.org/10.1128/AEM.72.5.3448-3457.2006
  25. Qiu J., Wilkens C., Barrett K., Meyer A. S. Microbial enzymes catalyzing keratin degradation: classification, structure, function // Biotechnol. Adv. 2020. V. 44. Art. 107607. https://doi.org/10.1016/j.biotechadv.2020.107607
  26. Shestakova A., Lyamina V., Timorshina S., Osmolovskiy A. Patented keratinolytic enzymes for industrial application: an overview // Recent Pat. Biotechnol. 2023. V. 17. Р. 346–363. https://doi.org/10.2174/1872208317666221212122656
  27. Tamura Y., Suzuki S., Sawada T. Role of elastase as a virulence factor in experimental Pseudomonas aeruginosa infection in mice // Microb. Pathog. 1992. V. 12. P. 237–244. https://doi.org/10.1016/0882‐401090058‐v
  28. White T. J., Bruns T., Lee S. J.W.T., Taylor J. L. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics // PCR Protocols: a guide to methods and applications. AP, 1990 .V. 18. № 1. P. 315–322.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Enzymatic indices of micromycete strains isolated from enrichment cultures of keratinolytics

下载 (290KB)
3. Fig. 2. Phylogenetic dendrogram based on the sequences of the internal transcribed spacers ITS1 and ITS2 of the rRNA genes. The phylogenetic tree was constructed using the maximum likelihood method in MEGA 10.0. Bootstrap analysis was performed using 1000 replicates. Values ​​greater than 70% are indicated.

下载 (578KB)
4. Fig. 3. Proteolytic activity of the studied micromycetes on media containing different nitrogen sources: C. pseudocladosporioides C66 – keratinolytic (a) and caseinolytic (b) activity; P. sizovae C11 – keratinolytic (c) and caseinolytic (d) activity; A. ochraceus ST2 – keratinolytic (e) and caseinolytic (f) activity; A. versicolor C51 – keratinolytic (g) and caseinolytic (h); K. terreum C106 – keratinolytic (i) and caseinolytic (j); T. inflatum ST1 – keratinolytic (k) and caseinolytic (l).

下载 (371KB)
5. Fig. 4. Dynamics of accumulation of extracellular proteases of T. inflatum ST1 culture during submerged cultivation on a medium without fish meal hydrolysate: 1 – keratinolysis; 2 – caseinolysis

下载 (108KB)
6. Fig. 5. Isoelectric focusing of extracellular proteins of the complex preparation T. inflatum ST1 in the pH range of ampholines 3.0–10.0: 1 – keratinolysis; 2 – caseinolysis; 3 – protein; 4 – pH

下载 (142KB)
7. Fig. 6. Electropherogram of keratinase T. inflatum ST1 (denaturing electrophoresis in PAGE).

下载 (73KB)

版权所有 © Russian Academy of Sciences, 2025