Features of development of microscopic fungi in conditions of ultra-weak magnetic fields

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Abstract. The paper presents the results of a study of the effect of ultra-weak magnetic fields (MF) on the viability, growth characteristics, respiratory activity, and antagonistic properties of microscopic fungi. The experiments were conducted on strains isolated from the interior of the International Space Station. To create hypomagnetic conditions (HMC), the hypomagnetic chambers GMK-1 and GMK-2, shielding the Earth’s MF, were used in the experiments. The chamber walls are a two-section magnetic screen made of amorphous permalloy tape. In the experiments, the GMK chambers made it possible to reduce the geomagnetic field by 1000–2000 times. The maximum value of the MF after demagnetization did not exceed 45 nT. It was found that the hypomagnetic field (HMC) did not have a predominantly inhibitory and/or stimulating effect on the viability of spores and the growth of fungal colonies, as indicated by the absence of reliable changes in the quantitative level, percentage of spore germination and radial growth rate of the tested strains in the HMC compared to geomagnetic conditions. At the same time, the growth and respiration rate of micromycetes in some cases was significantly stimulated in the GMF during their development on the surface of samples of structural materials under conditions of limited availability of nutrients. It was also found that the GMF affects the antagonistic properties of some microscopic fungi. The Penicillium rugulosum 633.12 strain grown in the GMF completely lost its antagonistic activity towards bacteria, which was found to be high when cultivated under standard geomagnetic conditions. The results obtained are discussed in the context of the features of microbial colonization of the habitat of future lunar complexes.

Texto integral

Acesso é fechado

Sobre autores

V. Rodimin

Institute of Biomedical Problems of the Russian Academy of Sciences

Email: charin@imbp.ru
Rússia, Moscow, 123007

S. Kharin

Institute of Biomedical Problems of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: charin@imbp.ru
Rússia, Moscow, 123007

S. Poddubko

Institute of Biomedical Problems of the Russian Academy of Sciences

Email: charin@imbp.ru
Rússia, Moscow, 123007

A. Kurakov

Lomonosov Moscow State University

Email: charin@imbp.ru

Faculty of Biology

Rússia, Moscow, 119234

S. Kulachkova

Lomonosov Moscow State University

Email: charin@imbp.ru

Faculty of Biology

Rússia, Moscow, 119234

M. Yarmeeva

Lomonosov Moscow State University

Email: charin@imbp.ru

Faculty of Biology

Rússia, Moscow, 119234

V. Lebedev

Lomonosov Moscow State University

Email: charin@imbp.ru

Skobeltsyn Research Institute of Nuclear Physics

Rússia, Moscow, 119991

A. Spassky

Lomonosov Moscow State University

Email: charin@imbp.ru

Skobeltsyn Research Institute of Nuclear Physics

Rússia, Moscow, 119991

Bibliografia

  1. Бинги В.Н., Савин А. В. Физические проблемы действия слабых магнитных полей на биологические системы // Успехи физ. наук. 2003. Т. 173. № 3. С. 265–300.
  2. Быстрова Е. Ю., Богомолова Е. В., Гаврилов Ю. М., Панина Л. К., Стефанов В. Е., Сурма С. В., Щеголев Б. Ф. Влияние постоянного магнитного и экранированного геомагнитного полей на развитие колоний микромицетов // Микология и фитопатология. 2009. Т. 43. С. 438–446.
  3. Викторов А. Н., Новикова Н. Д., Поликарпов Н. А., Горшков В. П., Константинова С. В. Актуальные проблемы микробиологической безопасности среды обитания орбитальных станций в условиях многолетней эксплуатации // Авиакосмическая и экологическая медицина. 1995. Т. 29. № 5. С. 51–55.
  4. Гудошников С. А., Венедиктов С. Н., Гребенщиков Ю. Б., Кузнецов П. А., Маннинен С. А., Васильева О. В., Криволапова О. Н., Труханов К. А., Круглов О. С., Спасский А. В. Экранирующая камера для ослабления магнитного поля Земли на основе рулонных магнитных материалов // Измерительная техника. 2012. № 3. С. 58–61.
  5. Касатова Е. С., Стручкова И. В., Аникина Н. А., Смирнов В. Ф. Действие слабого низкочастотного электромагнитного поля на активность экстрацеллюлярных оксидоредуктаз Trichoderma virens // Микология и фитопатология. 2017. Т. 51. С. 99–103.
  6. Легостаев В. П., Лопота В. А. Луна – шаг к технологиям освоения Солнечной системы. М.: РКК “Энергия”, 2011. 584 с.
  7. Макаров И. О., Клюев Д. А., Смирнов В. Ф., Смирнова О. Н., Аникина Н. А., Дикарева Н. В. Действие низкочастотного магнитного поля и низкоинтенсивного лазерного излучения на активность оксидоредуктаз и рост микромицетов – активных деструкторов полимерных материалов // Микробиология. 2019. Т. 88. С. 83–90.
  8. Makarov I. O., Klyuev D. A., Smirnov V. F., Smirnova O. N., Anikina N. A., Dikareva N. V. Effect of low-frequency pulsed magnetic field and low-level laser radiation on oxidoreductase activity and growth of fungi active destructors of polymer materials // Microbiology (Moscow). 2019. V. 88. P. 72–78.
  9. Панина Л. К., Богомолова Е. В., Гаврилова Ю. М., Дмитриев С. П., Доватор Н. А. Аномальный полярный рост мицелия в условиях “магнитного вакуума” // Микология и фитопатология. 2012. Т. 46. С. 81–85.
  10. Albertini M. C., Accorsi A., Citterio B., Burattini S., Piacentini M. P., Uguccioni F., Piatti E. Morphological and biochemical modifications induced by a static magnetic field on Fusarium culmorum // Biochimie. 2003. V. 85. P. 963–970.
  11. Belosokhov A., Yarmeeva M., Kokaeva L., Chudinova E., Mislavskiy S., Elansky S. Trichocladium solani sp. nov. – a new pathogen on potato tubers causing yellow rot // J. Fungi (Basel). 2022. V. 8. Art. 1160.
  12. Binhi V. N., Alipov Y. D., Belyaev I. Y. Effect of static magnetic field on E. coli cells and individual rotations of ion-protein complexes // Bioelectromagnetics. 2001. V. 22. P. 79–86.
  13. Binhi V. N., Prato F. S. Biological effects of the hypomagnetic field: an analytical review of experiments and theories // PLoS One. 2017. V. 12. Art. e0179340.
  14. Dubrov A. P. The geomagnetic field and life: Geomagnetobiology. New York City, USA. Springer, 1978. 318 p.
  15. Erdmann W., Kmita H., Kosicki J. Z., Kaszmarek L. How the geomagnetic field influences life on earth – an integrated approach to geomagnetobiology // Orig. Life Evol. Biosph. 2021. V. 51. P. 231–257.
  16. Nagy P., Fischl G. Effect of static magnetic field on growth and sporulation of some plant pathogenic fungi // Bioelectromagnetics. 2004. V. 25. P. 316–318.
  17. Moore R. L. Biological effects of magnetic fields: studies with microorganisms // Can. J. Microbiol. 1979. V. 25. P. 1145–1151.
  18. Novikova N. D., Pierson D. L., Poddubko S. V., Deshevaya Y. A., Ott C. M., Castro V. A., Bruce R. J. Microbiology of the International Space Station. In US and Russian cooperation in space biology and medicine / Eds. Sawin C. F., Hanson S. I., House N. G., Pestov D.I Reston, Virginia: American institute of aeronautics and astronautics, 2009. V. 5. 469 p.
  19. Obhođaš J., Valković V., Kollar R., Hrenović J., Nađ K., Vinković A., Orlić Ž. The growth and sporulation of Bacillus subtilis in nanotesla magnetic fields // Astrobiology. 2021. V. 21. P. 323–331.
  20. Panina L. K., Bogomolova E. V., Dmitriev S. P., Dovator N. A. Investigation of the structural reorganization of micromycetes in hypomagnetic fields // J. Phys. Conf. Ser. 2019. V. 1400. Art. 033016. https://doi.org/10.1088/1742-6596/1400/3/033016
  21. Pazur A., Schimek C., Galland P. Magnetoreception in microorganism and fungi // Cent. Eur. J. Biol. 2007. V. 2. P. 597–659.
  22. Ruiz-Gomez M.J., Prieto-Barcia M.I., Ristori-Bogajo E., Martinez-Morillo M. Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae // Bioelectrochem. 2004. V. 64. P. 151–155.
  23. Sinčák M., Sedlakova-Kadukova J. Hypomagnetic fields and their multilevel effects on living organisms // Processes. 2023. V. 11. Art. 282.
  24. Volpe P. Interactions of zero-frequency and oscillating magnetic fields with biostructures and biosystems // Photochem. Photobiol. Sci. 2003. V. 2. P. 637–648.
  25. White T. J., Bruns T. D., Lee S. B., Taylor J. W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics // PCR Protocols: A guide to methods and applications / Eds. Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. New York: Academic Press, 1990. P. 315–322.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The number of viable spores of test cultures of microscopic fungi when crops are kept in a standard geomagnetic field (control) and a GMF of no more than 45 nT (experiment) for 4, 6 and 9 days

Baixar (240KB)
3. Fig. 2. Percentage of spore germination of test cultures of microscopic fungi when kept in a standard geomagnetic field (control) and a GMF of no more than 45 nT (experiment) for 4, 6 and 9 days

Baixar (190KB)
4. Fig. 3. Radial growth rate of colonies of test cultures of microscopic fungi during their cultivation in a standard geomagnetic field (control) and a GMF of no more than 45 nT (experiment) for 4, 6 and 9 days

Baixar (229KB)
5. Fig. 4. Score assessment of the growth of test cultures of microscopic fungi on samples of structural materials after 14 and 28 days of exposure in a standard geomagnetic field (control) and a GMF of no more than 45 nT (experiment).

Baixar (398KB)
6. Fig. 5. Production of carbon dioxide by test cultures of microscopic fungi developing on samples of structural materials in a standard geomagnetic field (control) and a GMF of no more than 45 nT (experiment).

Baixar (269KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025