Persistent profile of Escherichia coli and Klebsiella pneumoniae strains with genetic determinants of iron chelaters

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Abstract. The objective of this study is to characterize the relationship between the persistent profile and the ability to produce iron-binding compounds of intestinal isolates of E. coli and K. pneumoniae with the genetic determinants iucBC and clbBN, both at the phenotypic and genetic levels. The use of designed primers and a developed unified multiplex-PCR algorithm permitted the establishment of a wide frequency of occurrence (44.0–80.0%) among opportunistic strains of E. coli and K. pneumoniae cultures with genetic determinants clbBN and iucBC, which encode the synthesis of aerobactin and colibactin. The presence of the clbBN/iucBC genes in the genetic apparatus of enterobacteria was found to result in a pronounced ability to produce iron-binding compounds and a wide range of persistent characteristics (antilysozyme, anticarnosine, antipeptide activity with respect to TNFα, antiimmunoglobulin activity with respect to IgM/IgG and biofilm formation). A comparison of the genomes of sequenced clbBN+iucBC+ strains with those of clbBN-iucBC- strains revealed the presence of genes essential for the biosynthesis and transport of aerobactin, a comprehensive list of pks island genes, and the existence of known homologues of the lysozyme inhibitor determinants Ivy and MliC, EspP (E. coli M-17) and PliC, LprI (K. pneumoniae ICIS-278_PBV and K. pneumoniae ICIS-277_SVA) were identified. Therefore, strains of E. coli and K. pneumoniae that possess the genetic determinants of iron chelators, namely clbBN and iucBC, exhibit both genotypic and phenotypic indications of siderophore production and protease activity against host antimicrobial factors. This allows for the use of these strains as markers of the pathogenic and persistent potential of opportunistic enterobacteria.

Full Text

Restricted Access

About the authors

O. V. Bukharin

Orenburg Federal Research Center, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: walerewna13@gmail.com

Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences

Russian Federation, 460014, Orenburg

E. V. Ivanova

Orenburg Federal Research Center, Ural Branch of the Russian Academy of Sciences

Email: walerewna13@gmail.com

Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences

Russian Federation, 460014, Orenburg

I. A. Zdvizhkova

Orenburg Federal Research Center, Ural Branch of the Russian Academy of Sciences

Email: walerewna13@gmail.com

Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences

Russian Federation, 460014, Orenburg

N. B. Perunova

Orenburg Federal Research Center, Ural Branch of the Russian Academy of Sciences

Email: walerewna13@gmail.com

Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences

Russian Federation, 460014, Orenburg

References

  1. Бондаренко В. М., Фиалкина С. В. Наличие генов генотоксина, ассоциированных с pks островом патогенности, у пробиотического штамма Escherichia coli М-17 // Журн. микробиологии, эпидемиологии и иммунобиологии. 2012. № 5. С. 25–27.
  2. Бухарин О. В. Персистенция патогенных бактерий. М.: Медицина, 1999. 365с.
  3. Бухарин О. В., Валышев А. В., Гильмутдинова Ф. Г. Экология микроорганизмов человека / Отв. ред. Бухарин О. В. Екатеринбург: УрО РАН, 2006. 480 с.
  4. Бухарин О. В., Гинцбург А. Л., Романова Ю. М., Эль-Регистан Г. И. Механизмы выживания бактерий. М.: Медицина. 2005. 367 с.
  5. Бухарин О. В., Иванова Е. В., Здвижкова И. А., Перунова Н. Б. Анализ антибиотикорезистености клинических изолятов Escherichia coli с генетическими детерминантами clbBN и iucBC // Клиническая лабораторная диагностика. 2023. Т. 68. С. 489–495.
  6. Бухарин О. В., Перунова Н. Б., Чайникова И. Н., Иванова Е. В., Смолягин А. И. Антицитокиновая активность микроорганизмов // Журн. микробиологии, эпидемиологии и иммунобиологии. 2011. № 4. С. 56–61.
  7. Егорова С. А., Макарова М. А., Кафтырева Л. А. Этиологическая значимость условно патогенных энтеробактерий при острых кишечных заболеваниях и дисбиотических состояниях кишечника // Инфекция и иммунитет. 2011. Т. 1. № 2. C. 181–184.
  8. Ермилова Е. В. Молекулярные аспекты адаптации прокариот. Санкт-Петербургский гос. ун-т. 2007. 341 с.
  9. Кузнецова Д. А., Рыкова В. А., Подладчикова О. Н. Сидерофоры бактерий: структура, функции и роль в патогенезе инфекций // Проблемы особо опасных инфекций. 2022. № 3. С. 14–22.
  10. Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. М.: Мир, 1984. 159 с.
  11. Новикова И. А. Железо и иммунный ответ (лекция) // Проблемы здоровья и экологии. 2011. № 4. C. 42–48.
  12. Bosveli A., Griboura N., Kampouropoulos I., Kalaitzakis D. The rapid synthesis of colibactin warhead model compounds using new metal-free photocatalytic cyclopropanation reactions facilitates the investigation of biological mechanisms // Chem. Eur. J. 2023. V. 29. Art. e202301713. https://doi.org/10.1002/chem.202301713
  13. Chen X., Wenxing L., Huoming L., Shigan Y., Jiang F., Cai W., Li G. Whole genome sequencing analysis of avian pathogenic Escherichia coli from China // Vet. Microbiol. 2021. V. 259. Art. 109158. https://doi.org/10.1016/j.vetmic.2021.109158
  14. Garcie C., Tronnet S., Garénaux A., McCarthy A.J., Brachmann A. O., Pénary M., Houle S., Nougayrède J. P., Piel J., Taylor P. W., Dozois C. M., Genevaux P., Oswald E., Martin P. The bacterial stress-responsive Hsp90 chaperone (HtpG) is required for the production of the genotoxin colibactin and the siderophore yersiniabactin in Escherichia coli // J. Infect. Dis. 2016. V. 214. P. 916–924. https://doi.org/10.1093/infdis/jiw294
  15. Jeong G., Khan F., Khan S., Nazia Tabassum N., Sonu Mehta S., Kim Y. Pseudomonas aeruginosa virulence attenuation by inhibiting siderophore functions // Appl. Microbiol. Biotechnol. 2023. V. 4. P. 1019–1038. https://doi.org/10.1007/s00253-022-12347-6
  16. Himpsl S. D., Mobley H. L.T. Siderophore detection using chrome azurol S and cross-feeding assays // Meth. Mol. Biol. 2019. P. 97–108. https://doi.org/10.1007/978-1-4939-9601-8_10
  17. Kirienko D. R., Kang Donghoon, Kirienko N. V. Novel pyoverdine inhibitors mitigate Pseudomonas aeruginosa pathogenesis // Front. Microbiol. 2019. V. 9. Art. 3317. https://doi.org/10.3389/fmicb.2018.03317
  18. Kramer J., Özkaya Ö., Kümmerli R. Bacterial siderophores in community and host interactions // Nat. Rev. Microbiol. 2020. V. 18. P. 152–163. https://doi.org/10.1038/s41579-019-0284-4
  19. Lages M. A., Balado M., Lemos M. L. The expression of virulence factors in Vibrio anguillarum is dually regulated by iron levels and temperature // Front. Microbiol. 2019. V. 10. Art. 2335. https://doi.org/10.3389/fmicb.2019.02335
  20. Martin P., Marcq I., Magistro G., Penary M., Garcie C., Payros D., Boury M., Olier M., Nougayrède J. P., Audebert M., Chalut C., Schubert S., Oswald E. Interplay between siderophores and colibactin genotoxin biosynthetic pathways in Escherichia coli // PLoS Pathog. 2013. V. 9. Art. e1003437. https://doi.org/10.1371/journal.ppat.1003437
  21. Müller L., Müller D., Sandrine Kammerecker S., Fluri M., Neutsch L., Emsermann M., Pelludat C. Effects in the apple flower determine if the siderophore desferrioxamine is a virulence factor for Erwinia amylovora CFBP1430 // Appl. Environ. Microbiol. 2022. V. 88. Art. e02433-21. https://doi.org/10.1128/aem.02433-21
  22. O’Toole G.A., Pratt L. A., Watnick P. I., Newman D. K., Weaver V. B., Kolter R. Genetic approaches to study of biofilms // Meth. Enzymol. 1999. V. 310. P. 91–109. https://doi.org/10.1016/s0076-6879(99)10008-9
  23. Schwyn B., Neilands J. B. Universal chemical assay for the detection and determination of siderophores // Anal. Biochem. 1987. V. 1. P. 47–56. https://doi.org/10.1016/0003-2697(87)90612-9
  24. Searle L. J., Méric G., Porcelli I., Sheppard K. S., Lucchini S. Variation in siderophore biosynthetic gene distribution and production across environmental and faecal populations of Escherichia coli // PLoS One. 2015. V. 10. Art. e0117906. https://doi.org/10.1371/journal.pone.0117906
  25. Ullah I., Lang M. Key players in the regulation of iron homeostasis at the host-pathogen interface // Front. Immunol. 2023. V. 14. Art. 1279826. https://doi.org/10.3389/fimmu.2023.1279826
  26. Wami H., Wallenstein A., Sauer D., Stoll M., Bünau R., Oswald E., Müller R., Dobrindt U. Insights into evolution and coexistence of the colibactin- and yersiniabactin secondary metabolite determinants in enterobacterial populations // Microb. Genomics. 2021. V. 7. Art. 000577. https://doi.org/10.1099/mgen.0.000577

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Electropherogram of the results of separation of aerobactin (iucBC) (a) and colibactin (clbBN) (b) amplicons in enterobacteria strains. MW – molecular weight scale.

Download (223KB)

Copyright (c) 2025 Russian Academy of Sciences