The symbiotic bacterium Serratia liquefaciens enhances the development of Bacillus thuringiensis bacteriosis in Colorado potato beetle larvae by alkalinization of pH in the midgut

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Abstarct. Invasion by pathogens is accompanied by competitive interactions between the pathogens and the microbiota, by the allocation of a niche in the intestine for the pathogen, and induction of immune processes in the host organism. These processes are accompanied by the accumulation of microbiota secondary metabolites, which may result in alterations of physicochemical characteristics of the host gut. These events may affect the speed of progression of bacterial infections, including secondary bacterial infections. In this study, experimental evidence showed that within the initial 24-h period, both in vitro and in vivo, interaction between Bacillus thuringiensis (Bt) and the symbiotic bacterium Serratia liquefaciens caused alkalization of the medium: both the culture fluid and the midgut contents of the Colorado potato beetle (CPB). Combined oral administration of S. liquefaciens and Bt resulted in 83% mortality of CPB larvae as early as 48 h after the inoculation. This mortality rate was 8.3-fold higher than that (<10%) observed in individuals infected with Bt alone. Provision of food treated with Bt and a peptide fraction of S. liquefaciens metabolites to CPB larvae had analogous synergistic effects on mortality. It is possible that during an invasion by pathogens under conditions of the gut microbiota, there is an increase in the production of metabolites that can result in a release of inhibitors into the local medium. These inhibitors may then act as activators of Bt endotoxins (Cry toxins). This hypothesis requires further research.

全文:

受限制的访问

作者简介

A. Artemchenko

Institute of Animal Systematics and Ecology SB RAS; Novosibirsk State University

Email: ovp0408@yandex.ru
俄罗斯联邦, Novosibirsk, 630091; Novosibirsk, 630090

T. Klementeva

Institute of Animal Systematics and Ecology SB RAS

Email: ovp0408@yandex.ru
俄罗斯联邦, Novosibirsk, 630091

V. Khodyrev

Institute of Animal Systematics and Ecology SB RAS

Email: ovp0408@yandex.ru
俄罗斯联邦, Novosibirsk, 630091

V. Sitnikov

Stavropol State Agrarian University

Email: ovp0408@yandex.ru
俄罗斯联邦, Stavropol, 355035

V. Glupov

Institute of Animal Systematics and Ecology SB RAS

Email: ovp0408@yandex.ru
俄罗斯联邦, Novosibirsk, 630091

O. Polenogova

Institute of Animal Systematics and Ecology SB RAS

编辑信件的主要联系方式.
Email: ovp0408@yandex.ru
俄罗斯联邦, Novosibirsk, 630091

参考

  1. Akiba Y., Sekijima,Y., Aizawa K., Fujiyoshi N. Microbial ecological studies on Bacillus thuringiensis III. Effect of pH on the growth of Bacillus thuringiensis in soil extracts // Jpn. J. Appl. Entomol. Zool. 1979. V. 23. P. 220–223. https://doi.org/10.1303/jjaez.23.220
  2. Alyokhin A. Y., Chen H., Udalov M., Benkovskaya G., Lindstrom L. Evolutionary considerations in potato pest management // Insect pests of potato: global perspectives on biology and management / Eds. Giordanengo P., Vincent C., Alyokhin A. Oxford, UK: Academic Press, 2013. P. 543–571. https://doi.org/10.1016/B978-0-12-386895-4.00019-3
  3. Arzumanov E. N. Effect of pH on the growth of Bacillus thuringiensis // Mikrobiologiia. 1979. V. 48. P. 65–69.
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Bravo A., Gill S. S., Soberon M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control // Toxicon. 2007. V. 49. P. 423–435. https://doi.org/10.1016/j.toxicon.2006.11.022
  6. Broderick N. A., Raffa K. F., Handelsman J. Midgut bacteria required for Bacillus thuringiensis insecticidal activity // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 15196–15199. https://doi.org/10.1073/pnas.0604865103
  7. Broderick N. A., Robinson C. J., McMahon M.D., Holt J., Handelsman J., Raffa K. F. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera // BMC Biology. 2009. V. 7. P. 1–9. https://doi.org/10.1186/1741-7007-7-11
  8. Caccia S., Di Lelio I., La Storia A., Marinelli A., Varricchio P., Franzetti E., Banyuls N., Tettamanti G., Casartelli M., Giordana B., Ferré J., Gigliotti S., Ercolini D., Pennacchio F. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 9486–9491. https://doi.org/10.1073/pnas.1521741113
  9. Chowdhury N., Hazarika D. J., Goswami G., Sarmah U., Borah S., Boro R. C., Barooah M. Acid tolerant bacterium Bacillus amyloliquefaciens MBNC retains biocontrol efficiency against fungal phytopathogens in low pH // Arch. Microbiol. 2022. V. 204. Art. 124. https://doi.org/10.1007/s00203-021-02741-5
  10. Chung S. H., Scully E. D., Peiffer M., Geib S. M., Rosa C., Hoover K., Felton G. W. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses // Sci. Rep. 2017. V. 7. Art. 39690. https://doi.org/10.1038/srep39690
  11. Dawson R. M.C., Elliott D. C., Elliot W. H., Jones K. M. (Eds.). Data for Biochemical Research. London: Oxford University Press, 1969. P. 670. ISBN-10: 0198553382. ISBN-13: 978-0198553380.
  12. Dias S., Sagardoy M. A. Influence of pH on the toxicity and survival of total cells and spores of Bacillus thuringiensis // Rev. Argent. Microbiol. 1998. V. 30. P. 122–129.
  13. Eida A. A., Bougouffa S., L’Haridon F., Alam I., Weisskopf L., Bajic V. B., Saad M. M., Hirt H. Genome insights of the plant-growth promoting bacterium Cronobacter muytjensii JZ38 with volatile-mediated antagonistic activity against Phytophthora infestans // Front. Microbiol. 2020. V. 11. Art. 369. https://doi.org/10.3389/fmicb.2020.00369
  14. Gayatri Priya N., Ojha A., Kajla M. R., Raj A., Rajagopal R. Host plant induced variation in gut bacteria of Helicoverpa armigera // PloS One. 2012. V. 7. Art. e30768. https://doi.org/10.1371/journal.pone.0030768
  15. Göldel B., Lemic D., Bažok R. Alternatives to synthetic insecticides in the control of the Colorado potato beetle (Leptinotarsa decemlineata Say) and their environmental benefits // Agriculture. 2020. V. 10. Art. 611. https://doi.org/10.3390/agriculture10120611
  16. Green E. R., Mecsas J. Bacterial secretion systems: an overview // Virulence Mechanisms of Bacterial Pathogens / Eds. Kudva I. T., Cornick N. A., Plummer P. J., Zhang Q., Nicholson T. L., Bannantine J. P., Bellaire B. H. USA: ASM Press, 2016. P. 213–239. https://doi.org/10.1128/9781555819286.ch8
  17. Grimont F., Grimont P. A. The genus Serratia // Prokaryotes / Eds. Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer, 2006. https://doi.org/10.1007/0-387-30746-X_11
  18. Gupta U., Dey P. Rise of the guardians: gut microbial maneuvers in bacterial infections // Life Sci. 2023. V. 330. Art. 121993. https://doi.org/10.1016/j.lfs.2023.121993
  19. Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis // Microbiol. Rev. 1989. V. 53. P. 242–255. https://doi.org/10.1128/mr.53.2.242-255.1989
  20. Kamada N., Chen G. Y., Inohara N., Núñez G. Control of pathogens and pathobionts by the gut microbiota // Nat. Immunol. 2013. V. 14. P. 685–690. https://doi.org/10.1038/ni.2608
  21. Keswani C., Singh H. B., García-Estrada C., Caradus J., He Y. W., Mezaache-Aichour S., Borris R. Sansinenea E. Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 1013–1034. https://doi.org/10.1007/s00253-019-10300-8
  22. Koller C. N., Bauer L. S., Hollingworth R. M. Characterization of the pH-mediated solubility of Bacillus thuringiensis var. san diego native δ-endotoxin crystals // Biochem. Biophys. Res. Commun. 1992. V. 184. P. 692–699. https://doi.org/10.1016/0006-291x(92)90645-2
  23. Li S., De Mandal S., Xu X., Jin F. The tripartite interaction of host immunity–Bacillus thuringiensis infection–gut microbiota // Toxins. 2020. V. 12. Art. 514. https://doi.org/10.3390/toxins12080514
  24. Maal K. B., Emtiazi G., Nahvi I. Increasing the alkaline protease activity of Bacillus cereus and Bacillus polymyxa simultaneously with the start of sporulation phase as a defense mechanism // Afr. J. Biotechnol. 2011. V. 10. P. 3894–3901. https://doi.org/10.5897/AJB10.774
  25. Mai A. G.M. Serratia a novel source of secondary metabolites // Adv. Biotechnol. Microbiol. 2018. V. 11. P. 83–87. https://doi.org/10.19080/AIBM.2018.11.555814
  26. Malovichko Y. V., Nizhnikov A. A., Antonets K. S. Repertoire of the Bacillus thuringiensis virulence factors unrelated to major classes of protein toxins and its role in specificity of host-pathogen interactions // Toxins. 2019. V. 11. Art. 347. https://doi.org/10.3390/toxins11060347
  27. Melo A. L.A., Soccol V. T., Soccol C. R. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review // Crit. Rev. Biotechnol. 2016. V. 36. P. 317–326. https://doi.org/10.3109/07388551.2014.960793
  28. Michaud D., Bernier-Vadnais N., Overney S., Yelle S. Constitutive expression of digestive cysteine proteinase forms during development of the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) // Insect Biochem. Mol. Biol. 1995. V. 25. P. 1041–1048. https://doi.org/10.1016/0965-1748(95)00044-V
  29. Muratoglu H., Demirbag Z., Sezen K. The first investigation of the diversity of bacteria associated with Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) // Biologia. 2011. V. 66. P. 288–293. https://doi.org/10.2478/s11756-011-0021-6
  30. Obeidat M., Khyami-Horani H., Al-Momani F. Toxicity of Bacillus thuringiensis β-exotoxins and δ-endotoxins to Drosophila melanogaster, Ephestia kuhniella and human erythrocytes // Afr. J. Biotechnol. 2012. V. 11. P. 10504–10512. https://doi.org/10.5897/AJB11.2260
  31. Palma L., Muñoz D., Berry C., Murillo J., Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity // Toxins. 2014. V. 6. P. 3296–3325. https://doi.org/10.3390/toxins6123296
  32. Polenogova O. V., Noskov Y. A., Yaroslavtseva O. N., Kryukova N. A., Alikina T., Klementeva T. N., Andrejeva J., Khodyrev V. P., Kabilov M. R., Kryukov V. Y., Glupov V. V. Influence of Bacillus thuringiensis and avermectins on gut physiology and microbiota in Colorado potato beetle: impact of enterobacteria on susceptibility to insecticides // PLoS One. 2021. V. 16. Art. e0248704. https://doi.org/10.1371/journal.pone.0248704
  33. Polenogova O. V., Noskov Y. A., Artemchenko A. S., Zhangissina S., Klementeva T. N., Yaroslavtseva O. N., Khodyrev V. P., Kruykova N. A., Glupov V. V. Citrobacter freundii, a natural associate of the Colorado potato beetle, increases larval susceptibility to Bacillus thuringiensis // Pest. Manag. Sci. 2022. V. 78. P. 3823–3835. https://doi.org/10.1002/ps.6856
  34. Robertson J. L., Preisler H. K. Pesticide bioassays with arthropods. Boca Raton: CRC, 1992. https://doi.org/10.1201/9781315373775
  35. Sablon L., Haubruge E., Verheggen F. J. Consumption of immature stages of Colorado potato beetle by Chrysoperla carnea (Neuroptera: Chrysopidae) larvae in the laboratory // Am. J. Potato Res. 2013. V. 90. P. 51–57. https://doi.org/10.1007/s12230-012-9275-y
  36. Sánchez-Clemente R., Igeño M., Población A. G., Guijo M. I., Merchán F., Blasco R. Study of pH changes in media during bacterial growth of several environmental strains // Proceedings. 2018. V. 2. Art. 1297. https://doi.org/10.3390/PROCEEDINGS2201297
  37. Tran P., Lander S. M., Prindle A. Active pH regulation facilitates Bacillus subtilis biofilm development in a minimally buffered environment // mBio. 2024. V. 15. Art. e0338723. https://doi.org/10.1128/mbio.03387-23
  38. Waites W., Kay D., Dawes I., Wood D., Warren S. C., Mandelstam J. Sporulation in Bacillus subtilis. Correlation of biochemical events with morphological changes in asporogenous mutants // Biochem. J. 1970. V. 118. P. 667–676. https://doi.org/10.1042/BJ1180667
  39. Weiss B. L. Maltz M. A., Vigneron A., Wu Y., Walter K. S., O’Neill M.B., Wang J., Aksoy S. Colonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment // PLoS Pathog. 2019. V. 15. Art. e1007470. https://doi.org/10.1371/journal.ppat.1007470
  40. West A. W., Burges H. D., Dixon T. J., Wyborn C. H. Survival of Bacillus thuringiensis and Bacillus cereus spore inocula in soil: effects of pH, moisture, nutrient availability and indigenous microorganisms // Soil Biol. Biochem. 1985. V. 17. P. 657–665. https://doi.org/10.1016/0038-0717(85)90043-4
  41. Xiang Q., Zhu D., Chen Q.-L., Delgado-Baquerizo M., Su J.-Q., Qiao M., Yang X.-R., Zhu Y.-G. Effects of diet on gut microbiota of soil collembolans // Sci. Total Environ. 2019. V. 676. P. 197–205. https://doi.org/10.1016/j.scitotenv.2019.04.104
  42. Yu Y., Wang Y., Li H., Yu X., Shi W., Zhai J. Comparison of microbial communities in Colorado potato beetles (Leptinotarsa decemlineata say) collected from different sources in China // Front. Microbiol. 2021. V. 12. Art. 639913. https://doi.org/10.3389/fmicb.2021.639913
  43. Yun J. H., Roh S. W., Whon T. W., Jung M. J., Kim M. S., Park D. S., Yoon C., Nam Y. D., Kim Y. J., Choi J. H., Kim J. Y., Shin N. R., Kim S. H., Lee W. J., Bae J. W. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host // Appl. Environ. Microbiol. 2014. V. 80. P. 5254–5264. https://doi.org/10.1128/AEM.01226-14
  44. Zheng H., Powell J. E., Steele M. I., Dietrich C., Moran N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling // Proc. Natl. Acad. Sci. USA. 2017. V. 114. P. 4775–4780. https://doi.org/10.1073/pnas.1701819114

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Interaction of Bacillus thuringiensis tenebrionis (morrisoni) and Serratia liquefaciens in vitro using the double culture method on nutrient agar with a nutrient medium acidity (pH) from 4.5 to 10.0.

下载 (758KB)
3. Fig. 2. Changes in the acidity of the culture fluid (pH) in vitro during 24-hour cultivation of B. thuringiensis tenebrionis (morrisoni) together with (a) Serratia liquefaciens bacteria or (b) the peptide fraction of S. liquefacien metabolites: 1 – control; 2 – B. thuringiensis; 3 – S. liquefaciens; 4 – B. thuringiensis + S. liquefaciens. Different letters (a–d) indicate intergroup differences (Tukey’s test, p < 0.05).

下载 (211KB)
4. Fig. 3. Mortality of Colorado potato beetle (Leptinotarsa ​​decemlineata) larvae after oral inoculation with the entomopathogenic bacteria B. thuringiensis tenebrionis (morrisoni) (Bt) and (a) Serratia liquefaciens bacteria or (b) its peptide fraction of metabolites. Different letters (a–c) indicate significant between-group differences (Log rank, p < 0.001). # – synergistic effect calculated by Robertson and Preisler (2004).

下载 (188KB)
5. Fig. 4. Changes in pH values ​​in the intestinal contents of the Colorado potato beetle L. decemlineata larvae 12 and 24 h after oral inoculation with entomopathogenic bacteria B thuringiensis tenebrionis (morrisoni) (Bt) and (a) Serratia liquefaciens bacteria or (b) their peptide fraction of metabolites: 1 – control; 2 – B. thuringiensis; 3 – S. liquefaciens; 4 – B. thuringiensis + S. liquefaciens. Different letters (a–c) indicate between-group differences (Tukey’s test, p < 0.05).

下载 (174KB)

版权所有 © Russian Academy of Sciences, 2025