The effect of temperature on the size of bacteroids in nodules of Glycine max and Glycine soja plants inoculated with the Bradyrhizobium liaoningense strain RCAM 04656

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is known that Glycine max and G. soja, entering into symbiotic relations with different rhizobia species, form nodules of determinate type. In such nodules, bacteroids are low differentiated and only slightly differ from free-living bacteria. Recently, it has been shown that in G. soja nodules when inoculated with Bradyrhizobium liaoningense strain RCAM04656, bacteroids were significantly larger than free-living bacteria. In this study, decreased temperature (21°C) was found to increase variation in the length of bacteroids in both G. max and G. soja nodules, with individual bacteroids increasing in size more than 15-fold over bacteria. At the optimal temperature (28°/24°C), the size of bacteroids varied to a lesser extent.

全文:

受限制的访问

作者简介

V. Pertsev

St. Petersburg State University; All-Russia Research Institute for Agricultural Microbiology

Email: vetsyganov@arriam.ru
俄罗斯联邦, St. Petersburg, 199034; St. Petersburg, 196608

A. Kitaeva

All-Russia Research Institute for Agricultural Microbiology

Email: vetsyganov@arriam.ru
俄罗斯联邦, St. Petersburg, 196608

V. Tsyganov

All-Russia Research Institute for Agricultural Microbiology

编辑信件的主要联系方式.
Email: vetsyganov@arriam.ru
俄罗斯联邦, St. Petersburg, 196608

参考

  1. Alunni B., Gourion B. Terminal bacteroid differentiation in the legume–rhizobium symbiosis: nodule-specific cysteine-rich peptides and beyond // New Phytol. 2016. V. 211. P. 411–417.
  2. Aranjuelo I., Aldasoro J., Arrese-Igor C., Erice G., Sanz-Sáez Á. How does high temperature affect legume nodule symbiotic activity? // Legume nitrogen fixation in a changing environment: Achievements and challenges / Eds. Sulieman S., Tran L.-S.P. Cham: Springer International Publishing, 2015. P. 67–87.
  3. Aranjuelo I., Arrese-Igor C., Molero G. Nodule performance within a changing environmental context // J. Plant Physiol. 2014. V. 171. P. 1076–1090.
  4. Fåhraeus G. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique // J. Gen. Microbiol. 1957. V. 16. P. 374–381.
  5. Guinel F. C. Getting around the legume nodule. I. The structure of the peripheral zone in four nodule types // Botany. 2009. V. 87. P. 1117–1138.
  6. Kitaeva A. B., Gorshkov A. P., Kusakin P. G., Sadovskaya A. R., Tsyganova A. V., Tsyganov V. E. Tubulin cytoskeleton organization in cells of determinate nodules // Front. Plant Sci. 2022. V. 13. Art. 823183.
  7. Mergaert P. Differentiation of symbiotic nodule cells and their rhizobium endosymbionts // Adv. Bot. Res. 2020. V. 94. P. 149–180.
  8. Mergaert P., Uchiumi T., Alunni B., Evanno G., Cheron A., Catrice O., Mausset A.-E., Barloy-Hubler F., Galibert F., Kondorosi A., Kondorosi E. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium–legume symbiosis // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 5230–5235.
  9. Serova T. A., Kusakin P. G., Kitaeva A. B., Seliverstova E. V., Gorshkov A. P., Romanyuk D. A., Zhukov V. A., Tsyganova A. V., Tsyganov V. E. Effects of elevated temperature on Pisum sativum nodule development: I – Detailed characteristic of unusual apical senescence // Int. J. Mol. Sci. 2023. V. 24. Art. 17144. https://doi.org/10.3390/ijms242417144
  10. Suganuma N., Nakamura Y., Yamamoto M., Ohta T., Koiwa H., Akao S., Kawaguchi M. The Lotus japonicus Sen1 gene controls rhizobial differentiation into nitrogen-fixing bacteroids in nodules // Mol. Genet. Genomics. 2003. V. 269. P. 312–320.
  11. Szczyglowski K., Shaw R. S., Wopereis J., Copeland S., Hamburger D., Kasiborski B., Dazzo F. B., de Bruijn F. J. Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus // Mol. Plant-Microbe Interact. 1998. V. 11. P. 684–697.
  12. Tsyganova A. V., Kitaeva A. B., Gorshkov A. P., Kusakin P. G., Sadovskaya A. R., Borisov Y. G., Tsyganov V. E. Glycyrrhiza uralensis nodules: histological and ultrastructural organization and tubulin cytoskeleton dynamics // Agronomy. 2021. V. 11. Art. 2508. https://doi.org/10.3390/agronomy11122508
  13. Tu T., Gao Z., Li L., Chen J., Ye K., Xu T., Mai S., Han Q., Chen C., Wu S., Dong Y., Chen J., Huang L., Guan Y., Xie F., Chen X. Soybean symbiotic-nodule zonation and cell differentiation are defined by NIN2 signaling and GH3-dependent auxin homeostasis // Dev. Cell. 2024. V. 59. P. 2254–2269.
  14. Van De Velde W., Zehirov G., Szatmari A., Debreczeny M., Ishihara H., Kevei Z., Farkas A., Mikulass K., Nagy A., Tiricz H., Satiat-Jeunemaître B., Alunni B., Bourge M., Kucho K., Abe M., Kereszt A., Maroti G., Uchiumi T., Kondorosi E., Mergaert P. Plant peptides govern terminal differentiation of bacteria in symbiosis // Science. 2010. V. 327. P. 1122–1126.

补充文件

附件文件
动作
1. JATS XML
2. Additional materials
下载 (86KB)
3. Figure. General view of nodules (a); histological structure of nodules (b); general view of bacteria Bradyrhizobium liaoningense RCAM04656 (c); general view of bacteroids (d). Scale bar – 1 mm (a); 500 µm (b); 1 µm (c); 5 µm (d).

下载 (571KB)

版权所有 © Russian Academy of Sciences, 2025