Карбонилирование диметилового эфира с использованием катализаторов на основе фосфорно-вольфрамовой кислоты и ее солей

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

В обзоре проведен анализ реакции карбонилирования диметилового эфира (ДМЭ) с использованием катализаторов на основе фосфорно-вольфрамовой кислоты и ее солей. Методом 13C MAS ЯМР проанализированы и сравнены механизм и кинетика карбонилирования ДМЭ на образцах H3PW12O40, Cs2HPW12O40, Rh/Cs2HPW12O40, Pt/Cs2HPW12O40, Ag/Cs2HPW12O40. В гетерогенном карбонилировании ДМЭ рассмотрены катализаторы, представляющие собой цезиевые соли фосфорно-вольфрамовой кислоты, а также ее родиевые и иридиевые соли, нанесенные на алюмосиликатные и силикатные носители.

Texto integral

Acesso é fechado

Sobre autores

Вера Остроумова

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Autor responsável pela correspondência
Email: ostroumova@ips.ac.ru
ORCID ID: 0000-0003-2870-6534

к. х. н.

Rússia, Москва, 119991

Антон Максимов

Институт нефтехимического синтеза им. А. В. Топчиева РАН; Московский государственный университет имени М. В. Ломоносова

Email: ostroumova@ips.ac.ru
ORCID ID: 0000-0001-9297-4950
Rússia, Москва, 119991; Москва, 119991

Bibliografia

  1. Paulik F.E., Roth J.F. Novel catalysts for the low- pressure carbonylation of methanol to acetic acid // Chem. Commun. 1968. P. 1578a. https://doi.org/10.1039/C1968001578A
  2. Roth J.F., Craddock J.H., Hershman. Roth F.E. Low-pressure process for acetic acid via carbonylation //Chem. Technol. 1971. V. 1. P. 600–605.
  3. Schultz R.G., Montgomery P.D. Vapor phase carbonylation of methanol to acetic acid // J. Catal. 1969. V. 13(1). P. 105–106. https://doi.org/10.1016/0021-9517(69)90377-7
  4. Shultz R.G. Пат. 371770 США. 1973. // to Monsanto Company.
  5. Howard M.J., Jones M.D., Roberts M.S., Taylor S.A. C1 to acetyls: catalysis and process // Catal. Today 1993. V. 18(4). P. 325–354. https://doi.org/10.1016/0920-5861(93)80060-E
  6. Sardesai A., Lee S., Tartamella T. Synthesis of methyl acetate from dimethyl ether using group VIII metal salts of phosphotungstic acid // Energ. Sourc. 2002. V. 24. P. 301–317. https://doi.org/10.1080/00908310252888682
  7. Mortreux A., Petit F. Industrial applications of homogeneous catalysts. D. Reidel Publishing Co.: Dordrecht, Holland.
  8. Shikada T., Ohno Y., Ogawa T., Ono M., Mizuguchi M., Tomura K., Fugimoto K. Direct Synthesis of dimethyl ether form synthesis gas // Stud. Surf. Sci. Catal. 1998. V. 119. P. 515–520. https://doi.org/10.1016/S0167-2991(98)80483-7
  9. El-Zeftawy A.M. Focus on the chemical value of methanol // J. King Saud Univ. 1995. V. 7. P. 209–256. https://doi.org/10.1016/S1018-3639(18)31058-4
  10. Volkova G.G., Plyasova L.M., Salanov A.N., Kustova G.N., Yurieva T.M., Likholobov V. A. Heterogeneous catalysts for halide-free carbonylation of dimethyl ether // Catal. Lett. 2002. V. 80(3–4). P. 175–179. https://doi.org/10.1023/A:1015420828251
  11. Foster D. Kinetic and spectroscopic studies of the carbonylation of methanol with an iodide-promoted iridium catalyst // J. Chem. Soc. Dalton Trans. 1979. P. 1639–1645. https://doi.org/10.1039/DT9790001639
  12. Fujimoto K., Shikada T., Omata K., Tominaga H. Vapor phase carbonylation of methanol with solid acid catalysts // 1984. V. 13(12). P. 2047–2050. https://doi.org/10.1246/cl.1984.2047
  13. Ellis B., Howard M.J., Joyner R.W., Reddy K.N., Padley M.B., Smith W.J. Heterogeneous catalysts for the direct, halide-free carbonylation of methanol // Stud. Surf. Sci. Catal. 1996. V. 101. P. 771–779. https://doi.org/10.1016/S0167-2991(96)80288-6
  14. Cheung P., Bhan A., Sunley G.J., Iglesia E. Selective Carbonylation of Dimethyl Ether to Methyl Acetate Catalyzed by Acidic Zeolites // Angew. Chem. Int. Ed. 2006. V. 45. P. 1617–1620. https://doi.org/10.1002/anie.200503898
  15. Cheung P., Bhan A., Sunley G.J., Lawb D.J., Iglesia E. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites // J. Catal. 2007. V. 245(1). P. 110–123. https://doi.org/10.1016/j.jcat.2006.09.020
  16. Luzgin M.V., Kazantsev M.S., Wang W., Stepanov A.G. Reactivity of methoxy species toward CO on Keggin 12-H3PW12O40: a study with solid state NMR // J. Phys. Chem. C2009. V. 113(45). P. 19639–19644. https://doi.org/10.1021/jp906888m
  17. Guisnet M., Bichon P., Gnep N. S., Essayem N. Transformation of propane, n-butane and n-hexane over H3PW12O40 and cesium salts. Comparison to sulfated zirconia and mordenite catalysts // Topic. Catal. 2000. V. 11–12(1–4). P. 247–254. https://doi.org/10.1023/A:1027229915673
  18. Essayem N., Coudurier G., Fournier M., Védrine J.C. Acidic and catalytic properties of CsxH3–xPW12O40 heteropolyacid compounds // Catal. Lett. 1995. V. 34. P. 223–235. https://doi.org/10.1007/BF00808337
  19. Okuhara T., Nishimura T., Misono M. Novel microporous solid “Superacids”: CsxH3–xPW12O40 (2 ≤ x ≤ 3) // Stud. Surf. Sci. Catal. 1996. V. 101. P. 581–590. https://doi.org/10.1016/S0167-2991(96)80269-2
  20. Wegman W.R. European Patent 0 353 722 (1989).
  21. Volkova G.G., Plyasova L.M., Shkuratova L.N., Budneva A.A., Paukshtis E.A., Timofeeva M.N., Likholobov V.A. Solid superacids for halide-free carbonylation of dimethyl ether to methyl acetate // Stud. Surf. Sci. Catal. 2004. V. 147. P. 403–408. https://doi.org/10.1016/S0167-2991(04)80085-5
  22. Kozhevnikov I.V. Advances in catalysis by heteropolyacids // Russ. Chem. Rev. 1987. V. 56 (9). P. 811–825. https://doi.org/10.1070/RC1987v056n09ABEH003304
  23. Okuhara T., Mizuno N., Misono M. Catalytic chemistry of heteropolycompounds // Adv. Catal. 1996. V. 41. P. 113–252. http://dx.doi.org/10.1016/S0360-0564(08)60041-3
  24. Bardin B.B., Bordawekar S.V., Neurock M., Davis R.J. Acidity of Keggin-type heteropolycompounds evaluated by catalytic probe reactions, sorption microcalorimetry, and density functional quantum chemical calculations // J. Phys. Chem. B. 1998. V. 102. P. 10817–10825. https://doi.org/10.1021/jp982345y
  25. Ueda T., Tatsumi T., Eguchi T., Nakamura N. Structure and properties of acidic protons in anhydrous dodecatungstophosphoric acid, H3PW12O40, As studied by solid-state1H,2H NMR, and 1H-31P Sedor NMR // J. Phys. Chem. B. 2001. V. 105 (23). P. 5391–5396. https://doi.org/10.1021/jp003439m
  26. Zhang H.I., Zheng A.M., Yu H.G., Li S.H., Lu X., Deng F. Formation, location, and photocatalytic reactivity of methoxy species on Keggin 12-H3PW12O40: a joint solid-state NMR spectroscopy and DFT calculation Study // J. Phys. Chem. C. 2008. V. 112(40). P. 15765–15770. https://doi.org/10.1021/jp806588q
  27. Pope M.T., Müller A. Polyoxometalate chemistry — an old field with new dimensions in several disciplines // Angew. Chem. Int. Ed. Engl. 1991. V. 30. P. 34–48. https://doi.org/10.1002/anie.199100341
  28. Yang J., Janik M.J., Ma D., Zheng A., Zhang M., Neurock M., Davis R. J., Ye Ch., Deng F. Location, acid strength, and mobility of the acidic protons in Keggin 12-H3PW12O40: a combined solid-state NMR spectroscopy and DFT quantum chemical calculation study // J. Am. Chem. Soc. 2005. V. 127(51). P. 18274–18280. https://doi.org/10.1021/ja055925z
  29. Nakamura O., Ogino I., Kodama T. The water content and humidity ranges of dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals // Mater. Reas. Bull. 1980. V. 15(8). P. 1049–1054. https://doi.org/10.1016/0025-5408(80)90064-1
  30. Nakamura O., Ogino I., Kodama T. Temperature and humidity ranges of some hydrates of high-proton-conductive dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals under an atmosphere of hydrogen or either oxygen or air // Sol. State Ion. 1981. V. 3–4. P. 347–341. https://doi.org/10.1016/0167-2738(81)90111-9
  31. Brown G.M., Noe-Spirlet M.-R., Busing W.R., Levy H.A. Dodecatungstophosphoric acid hexahydrate, (H5O2+)3(PW12O403–). The true structure of Keggin’s ‘pentahydrate’ from single-crystal X-ray and neutron diffraction data // Acta Crystallogr. 1977. V. B33. P. 1038–1046. https://doi.org/10.1107/S0567740877005330
  32. Keggin J.F. Structure of the Molecule of 12-Phosphotungstic Acid // Nature. 1933. V. 131. P. 908–909. https://doi.org/10.1038/131908b0
  33. Spirlet M.-R., Busing W.R. Dodecatungstophosphoric acid-21-water by neutron diffraction // Acta Cryst. B1978. V. 34. P. 907–910. https://doi.org/10.1107/S0567740878004306
  34. Bradley A.J., Illingsworth J.W. The crystal of H3PW12O40·29H2O // Proc. R. Soc. (London). 1936. V. 157(890). P. 113–131. https://doi.org/10.1098/rspa.1936.0183
  35. Fournier M., Feumi-Jantou Ch., Rabia Ch., Herve G., Launay S. Polyoxometalates catalyst materials: X-ray thermal stability study of phosphorus-containing heteropolyacids H3 +xPM12 –xVxO40·13–14H2O (M = = Mo, W; x = 0–1) // J. Mater. Chem. 1992. V. 2. P. 971–978. https://doi.org/10.1039/JM9920200971
  36. Lee K.Y., Mizuno N., Okuhara T., Misono M. Catalysis by heteropoly compounds. XIII. An infrared study of ethanol and diethyl ether in the pseudoliquid phase of 12-tungstophosphoric acid // Bull. Chem. Soc. Jpn. 1989. V. 62. P. 1731–1739. https://doi.org/10.1246/bcsj.62.1731
  37. Luzgin M.V., Kazantsev M.S., Volkova G.G., Wang W., Stepanov A.G. Carbonylation of dimethyl ether on solid Rh-promoted Cs-salt of Keggin 1-H3PW12O40: a solid-state NMR study of the reaction mechanism // J. Catal. 2011. V. 277. P. 72–79. https://doi.org/10.1016/j.jcat.2010.10.015
  38. Luzgin M.V., Kazantsev M.S., Volkova G.G., Stepanov A.G. Solid-state NMR study of the kinetics and mechanism of dimethyl ether carbonylation on cesium salt of 12-tungstophosphoric acid modified with Ag, Pt, and Rh // J. Catal. 2013. V. 308. P. 250–257. https://doi.org/10.1016/j.jcat.2013.08.024
  39. Kazantsev M.S., Luzgin M V., Volkova G.G., Stepanov A.G. Carbonylation of dimethyl ether on Rh/Cs2HPW12O40: solid-state NMR study of the mechanism of reaction in the presence of a methyl iodide promoter // J. Catal. 2012. V. 291. P. 9–16. https://doi.org/10.1016/j.jcat.2012.03.024
  40. Breitmaier E., Voelter W. 13C NMR spectroscopy, methods and applications in organic chemistry. VCH, Weinheim. 1978.
  41. Olah G.A., Doggweiler H., Felberg J.D., Fronlich S. Onium ions. 33. (Trimethylsilyl)- and [(trimethylsilyl)methyl]oxonium and halonium ions // J. Org. Chem. 1985. V. 50. P. 4847–4851. https://doi.org/10.1021/jo00224a039
  42. Haynes A., Mann B.E., Gulliver D.J., Morris G.E., Maitlis P.M. Direct observation of MeRh(CO)2I3–, the key intermediate in rhodium-catalyzed methanol carbonylation // J. Am. Chem. Soc. 1991. V. 113(22). P. 8567–8569. https://doi.org/10.1021/ja00022a079
  43. Haynes A., Mann B.E., Morris G.E., Maitlis P.M. Mechanistic studies on rhodium-catalyzed carbonylation reactions: spectroscopic detection and reactivity of a key intermediate, [MeRh(CO)2I3]– // J. Am. Chem. Soc. 1993. V. 115(10). P. 4093–4100. https://doi.org/10.1021/ja00063a030
  44. Munson E.J., Haw J.F. NMR observation of trimethyloxonium formation from dimethyl ether on zeolite HZSM-5 // J. Am. Chem. Soc. 1991. V. 113(16). P. 6303–6305. https://doi.org/10.1021/ja00016a075
  45. Xu Q., Nakatani H., Souma Y. A new rhodium catalyst: formation of [Rh(CO)4]+ in concentrated sulfuric acid and its application to carbonylation of olefins // J. Org. Chem. 2000. V. 65(5). P. 1540–1543. https://doi.org/10.1021/jo991659u
  46. Duncan T.M., Yates J.T., Vaughan R.W. 13C NMR of CO chemisorbed on Rh dispersed on Al2O3 // J. Chem. Phys. 1979. V. 71. P. 3129–3130. https://doi.org/10.1063/1.438669
  47. Duncan T.M., Yates J.T., Vaughan R.W. A 13C NMR study of the adsorbed states of CO on Rh dispersed on Al2O3 // J. Chem. Phys. 1980. V. 73. P. 975–985. https://doi.org/10.1063/1.440746
  48. Duncan T.M., Root T.W. Adsorbed states of CO on dispersed metals: quantitative analysis with 13C NMR spectroscopy // J. Phys. Chem. 1988. V. 92(15). P. 4426–4432. https://doi.org/10.1021/j100326a036
  49. Duncan T.M., Zilm K.W., Hamilton D.M., Root T.W. Adsorbed states of carbon monoxide on dispersed metals: a high-resolution solid-state NMR study // J. Phys. Chem. 1989. V. 93. P. 2583–2590. https://doi.org/10.1021/j100343a067
  50. Gleeson J.W., Vaughan R.W. 13C NMR chemical shift tensors of metal carbonyls // J. Chem. Phys. 1983. V. 78. P. 5384–5392. https://doi.org/10.1063/1.445465
  51. Molitor P.F., Shoemaker R.K., Apple T.M. Detection and structural characterization of rhodium dicarbonyls adsorbed in Y zeolites // J. Phys. Chem. 1989. V. 93. P. 2891–2893. https://doi.org/10.1021/j100345a010
  52. Gay I.D., Hu B., Sheng T.C. Two-dimensional 31P exchange NMR study of adsorbed phosphine layers // Langmuir. 1999. V. 15. P. 6132–6134. https://doi.org/10.1021/la990302i
  53. Rao L.F., Pruski M., King T.S. Structure and stability of rhodium clusters in NaY studied by NMR and FTIR // J. Phys. Chem. 1997. V. 101(29). P. 5717–5724. https://doi.org/10.1021/jp970971+
  54. Hurlburt P.K., Rack J.J., Luck J.S., Dec S.F., Webb J.D., Anderson O.P., Strauss S.H. Nonclassical metal carbonyls: [Ag(CO)]+ and [Ag(CO)2]+ // J. Am. Chem. Soc. 1994. V. 116. P. 10003–10014. https://doi.org/10.1021/ja00101a021
  55. Souma Y., Kawasaki H. Synthesis of tert.-Alkanoic acid catalyzed by Cu(CO)n+ and Ag(CO)2+ under atmospheric pressure // Catal. Today 1997. V. 36. P. 91–97. https://doi.org/10.1016/S0920-5861(96)00201-5
  56. Bradley J.S., Millar J.M., Hill E.W., Behal S. Surface chemistry on transition metal colloids — an infrared and NMR study of carbon monoxide adsorption on colloidal platinum // J. Catal. 1991. V. 129. P. 530–539. https://doi.org/10.1016/0021-9517(91)90056-A
  57. Newkirk A. E., McKee D. W. Thermal decomposition of rhodium, iridium, and ruthenium chlorides // J. Catal. 1968. V. 11. P. 370–377. https://doi.org/10.1016/0021-9517(68)90061-4
  58. Gay I.D. Observation of bridging carbon monoxide on rhodium/silica carbon-13 MAS NMR // J. Phys. Chem. 1990. V. 94. P. 1207–1209. https://doi.org/10.1021/j100367a001
  59. Rica C.A., Worley S.D., Curtis C.W., Guin C.W., Guin J.A., Tarrer A.R. The oxidation state of dispersed Rh on Al2O3 // J. Chem. Phys. 1981. V. 74. P. 6487–6497. https://doi.org/10.1063/1.440987
  60. Cavanagh R.R., Yates J.T. Site distribution studies of Rh supported on Al2O3 — An infrared study of chemisorbed CO // J. Chem. Phys. 1981. V. 74. P. 4150–4155. https://doi.org/10.1063/1.441544
  61. Van‘t Blik H.F.J., Van Zon J.B.A.D., Huizinga T., Vis J.C., Koningsberger D. C., Prim R. Structure of rhodium in an ultradispersed rhodium/alumina catalyst as studied by EXAFS and other techniques // J. Am. Chem. Soc. 1985. V. 107. P. 3139–3147. https://doi.org/10.1021/ja00297a020
  62. Basu P., Panayotov D., Yates J. Spectroscopic evidence for the involvement of hydroxyl groups in the formation of dicarbonylrhodium(I) on metal oxide supports // J. Phys. Chem. 1987. V. 91. P. 3133–3136. https://doi.org/10.1021/j100296a007
  63. Luzgin M.V., Rogov V.A., Shmachkova V.P., Kotsarenko N.S., Stepanov A.G. Methane Carbonylation with CO on Sulfated Zirconia: Evidence from Solid-State NMR for the Selective Formation of Acetic Acid // J. Phys. Chem. C2007. V. 111. P. 10624–10629. https://doi.org/10.1021/jp0728757
  64. Dortman D.E., Bauer D., Roberts J.D. Nuclear magnetic resonance spectroscopy. Carbon-13 chemical and carbon-13 proton couplings in some esters and ethers // J. Org. Chem. 1975. V. 40. P. 3729–3735. https://doi.org/10.1021/jo00913a024
  65. Luzgin M.V., Rogov V.A., Arzumanov S.S., Toktarev A.V., Stepanov A.G., Parmon V.N. Understanding methane aromatization on a Zn-modified high-silica zeolite // Angew. Chem. Int. Ed. 2008. V. 47. P. 4559–4562. https://doi.org/10.1002/anie.200800317
  66. Kazantsev M.S., Luzgin M.V., Stepanov A.G. Carbonylation of dimethyl ether with CO on solid 12-tungstophosphoric acid: in situ magic angle spinning NMR monitoring of the ration kinetics // J. Phys. Chem. 2013. V. 117(21). P. 11168–11175. https://doi.org/10.1021/jp401604r
  67. Lacey M.J., Macdonald C.G., Pross A. Geminal proton coupling constants in some methyl derivatives // Aust. J. Chem. 1970. V. 23. P. 1421–1429. https://doi.org/10.1071/CH9701421
  68. Gottlieb H.E., Kotlyar V., Nudelman A. NMR chemical of common laboratory solvents as trace impurities // J. Org. Chem. 1997. V. 62. P. 7512–7515. https://doi.org/10.1021/jo971176v
  69. Olah G., O’Brien D. Stable Carbonium Ions. XXXVI. 1aProtonated aliphatic ethers and their cleavage to carbonium ions // J. Am. Chem. 1967. V. 89. P. 1725–1728. https://doi.org/10.1021/ja00983a033
  70. Kanda Y., Lee k.Y., Nakata Sh., Asaoka S., Misono M. Solid-State NMR of H3PW12O40·nH2O and H3PW12O40·6C2H5OH // Chem. Lett. 1988. V. 17(1). P. 139–142. https://doi.org/10.1246/cl.1988.139
  71. Mastikhin V.M., Kulikov S.M., Nosov A.V., Kozhevnikov I.V., Mudrakovsky I.L., Timofeeva M.N. 1H and 31P MAS NMR studies of solid heteropolyacids and H3PW12O40 supported on SiO2 // J. Mol. Catal. 1990. V. 60(1). P. 65–70. https://doi.org/10.1016/0304-5102(90)85068-S
  72. Mastikhin V.M., Terskikh V.V., Timofeeva M.N., Krivoruchko O.P. 1H, 31P NMR MAS, infrared and catalytic studies of heteropolyacid H3PW12O40 supported on MgF2 // J. Mol. Catal. A 1995. V. 95(2). P. 135–140. https://doi.org/10.1016/1381-1169(94)00003-4
  73. Filek U., Bressel A., Sulikowski B., Hunger M. Structural Stability and Brønsted Acidity of Thermally Treated AlPW12O40 in Comparison with H3PW12O40 // J. Phys. Chem. C. 2008. V. 112(49). P. 19470–19476. https://doi.org/10.1021/jp807947v
  74. Misono M., Sakata K., Yoneda Y., Lee W.Y. Acid-redox bifunctional properties of heteropoly compounds of molybdenum and tungsten correlated with catalytic activity for oxidation of methacrolein. Elsevier, Kodansha, Tokyo. 1980. ID1047.
  75. Hunger M. Bronsted Acid Sites in Zeolites Characterized by Multinuclear Solid-State NMR Spectroscopy // Catal. Rev.-Sci. Eng. 1997. V. 39. P. 345–393. https://doi.org/10.1080/01614949708007100
  76. McMurry J. Fundamentals of organic chemistry. Cengage learning. Stamford. 2011.
  77. Jiang Y., Hunger M., Wang W. On the reactivity of surface methoxy species in acidic zeolites // J. Am. Chem. Soc. 2006. V. 128. P. 11679–11692. https://doi.org/10.1021/ja061018y
  78. Bhan A., Allian A.D., Sunley G.J., Law D.J., Iglesia E. Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls // J. Am. Chem. Soc. 2006. V. 129(16). P. 4919–4924. https://doi.org/10.1021/ja070094d
  79. Maksimov G.M., Paukshis E.A., Budneva A.A., Maksimovskay R.I., Likholobov B.A. // Acidity of heteropoly acids with various structures and compositions studied by IR spectroscopy of the pyridinium salts // Russ. Chem. Bull. Int. Ed. 2001. V. 20. P. 584–590. https://doi.org/10.1023/A:1011384005996
  80. Shen H., Li Y., Huang Sh., Cai K., Cheng Z., Lv J., Ma X. The carbonylation of dimethyl ether catalyzed by supported heteropoly acids: the role of Bronsted acid properties // Catal. Today 2019. V. 330. P. 117–123. https://doi.org/10.1016/j.cattod.2018.04.001
  81. Khder A.E.R.S., Hassan H.M.A., El-Shall M.S. Acid catalyzed organic transformations by heteropoly tungstophosphoric acid supported on MCM-41 // Appl. Catal. A Gen. 2012. V. 411–412. P. 77–86. https://doi.org/10.1016/j.apcata.2011.10.024
  82. Sushkevich V.L., Ordomsky V.V., Ivanova I.I. Isoprene synthesis from formaldehyde and isobutene over Keggin-type heteropolyacids supported on silica // Catal. Sci. Technol. 2016. V. 6. P. 6354–6364. https://doi.org/10.1039/C6CY00761A

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Keggin structure of H3PW12O40 (three types of external oxygen atoms: Ob, Oc, Od in the molecule structure, Oa - central oxygen atom) (according to [28]).

Baixar (20KB)
3. Fig. 2. Preparation of methyl acetate from dimethyl ether by the Koch mechanism (according to [6]).

Baixar (6KB)
4. Fig. 3. CP/MAS NMR 13C spectra of the complexes formed upon adsorption of DME on H3PW12O40, Cs2HPW12O40, Rh/Cs2HPW12O40 at: a) 293 K, 30 min; b) 373 K, 30 min; c) 423 K, 30 min); and on Ag/Cs2HPW12O40 and Pt/Cs2HPW12O40 at: d) 293 K; e) 423 K; f) 473 K). The rotational speed was 5.0 kHz. The asterisks (*) denote the lateral rotation bands (according to [37, 38]).

Baixar (91KB)
5. Fig. 4. CP/MAS 13C NMR spectra of particles formed by 13CO at 293-423 K on the surface of: a) Rh/Cs2HPW12O40; b) Pt/Cs2HPW12O40, c) Ag/Cs2HPW12O40. The magnetic field rotation rate was 8.0 kHz; asterisks (*) denote lateral rotation bands (according to [38]).

Baixar (71KB)
6. Fig. 5. CP/MAS NMR 13C spectra of the products obtained from the interaction of DME-13C and 13CO on Rh/Cs2HPW12O40: (a) at room temperature; (b) at 400 K for 30 min, (c) at 423 K for 30 min, (d) at 423 K for 90 min; and on Ag/Cs2HPW12O40 and Pt/Cs2HPW12O40 at (e) 293 K, (f) 423 K for 60 min, (g) 473 K for 30 min, (h) 473 K for 2 h. The asterisks denote the lateral rotation bands (according to [37, 38]).

Baixar (101KB)
7. Fig. 6. CP/MAS 13C NMR spectra of the carbonylation products of DME-13C 13CO on Cs2HPW12O40: a) at room temperature; b) at 423 K for 30 min, c) at 473 K for 60 min.

Baixar (114KB)
8. Fig. 7. Stack plot of 1H MAS NMR spectra: a) at 453 K of DME adsorbed on H3PW12O40 and reacting with CO. The initial spectrum was recorded after 5 min after reaching the temperature of 453 K, the final spectrum was recorded after 400 min of reaction; b) at 449 K DME adsorbed on Rh/Cs2HPW12O40 and reacting with CO. The initial spectrum was recorded 5 min after reaching 449 K and the final spectrum was recorded after 180 min of reaction; c) at 482 K DME adsorbed on Ag/Cs2HPW12O40 and reacting with CO. The initial spectrum was recorded 2 min after reaching a temperature of 482 K, and the final spectrum was recorded after 80 min of reaction (according to [38, 66]).

Baixar (24KB)
9. Fig. 8. Arrhenius curves for the initial rate, W0DME, of DME carbonylation on: (○) - Rh/Cs2HPW12O40; (□) - Pt/Cs2HPW12O40; (∇) - Ag/Cs2HPW12O40 (from [66]).

Baixar (16KB)
10. Fig. 9. Diffractograms of samples χ wt% of GPC/SBA-15 (according to [80]).

Baixar (23KB)
11. Fig. 10. TEM samples: a) 25 wt% GPC/SBA-15 and b) 75 wt% GPC/SBA-15 (according to [80]).

Baixar (47KB)
12. Fig. 11. Dependence of: a) methyl acetate yield on flow time; b) selectivity for methyl acetate on different samples χ wt% GPC/SBA-15. Reaction conditions: catalyst mass = 1 g, DME/CO ratio (1 : 49), temperature 473 K, pressure 1.5 MPa, total flow rate = 30 ml/min, flow time = 1.5 h (according to [80]).

Baixar (34KB)
13. Fig. 12. Selectivity for methyl acetate and by-products (methanol: MeOH, methyl formate MF, acetic acid AcOH) on χ wt% GPC/SBA-15 samples. Reaction conditions: catalyst mass = 1 g, DME/CO ratio (1 : 49), temperature 473 K, pressure 1.5 MPa, total flow rate = 30 ml/min, flow time = 1.5 h (according to [80]).

Baixar (21KB)
14. Fig. 13. Conversion and product composition profiles when using: a) 58 wt% RhPW12O40/SiO2; b) 58 wt% IrPW12O40/SiO2. Flow conditions: 3 : 1 (molar) CO : DME, WHSV = 0.15 h-1; carrier: Aldrich grade 12, 28- 200 mesh; operating conditions: 498 K, 10 MPa (according to [6]).

Baixar (43KB)
15. Fig. 14. Methyl acetate selectivity profiles using: a) 58 wt% RhPW12O40/SiO2; b) 58 wt% IrPW12O40/SiO2. Flow conditions: 3 : 1 (molar) CO : DME, WHSV = 0.15 h-1; carrier: Aldrich grade 12, 28- 200 mesh; operating conditions: 498 K, 10 MPa (according to [6]).

Baixar (23KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024