Капиллярные колонки, приготовленные на основе модифицированного органическими основаниями поли(1-триметилсилил‑1-пропина), для анализа товарного (целевого и технического) н-бутана

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Разработан способ газохроматографического анализа примесей углеводородов и метанола в н-бутане (содержание более 99%) с использованием капиллярных колонок, приготовленных на основе модифицированного поликатионным полиэтиленимином (ПЭИ) поли(1-триметилсилил- 1-ропина) (ПТМСП). Исследована селективность разделения определяемых компонентов и показано, что разрешающая способность для пиков углеводородов С3–С4 и метанола на пористослойных капиллярных колонках размером 30 м × 0.32 мм (ПТМСП032-ПЭИ) и 25 м × 0.53 мм (ПТМСП053-ПЭИ) с модифицированным полиэтиленимином слоем ПТМСП существенно выше, чем для предложенной ранее капиллярной колонки размером 30 м × 0.32 мм с поли(1-триметилсилил-1-пропином) (ПТМСП032). Метанол на колонках ПТМСП032-ПЭИ и ПТМСП053-ПЭИ элюируется в виде симметричного пика отдельно от всех компонентов, включая пропан, пропилен, 1-бутен, н-бутан. Рассчитанные пределы детектирования с использованием пламенно-ионизационного детектора находятся в диапазоне 1.51–7.95 × 10–12 г/с для углеводородов и 6.47 × 10–12 г/с для метанола.

Full Text

Restricted Access

About the authors

Елена Юрьевна Яковлева

Институт катализа им. Г. К. Борескова СО РАН; Новосибирский государственный университет

Author for correspondence.
Email: yakovl@catalysis.ru
ORCID iD: 0000-0002-8284-7832

к. х. н.

Russian Federation, Новосибирск, 630090; Новосибирск, 630090

Юрий Валерьевич Патрушев

Институт катализа им. Г. К. Борескова СО РАН; Новосибирский государственный университет

Email: yakovl@catalysis.ru
ORCID iD: 0000-0002-2078-5488

к. х. н.

Russian Federation, Новосибирск, 630090; Новосибирск, 630090

References

  1. Другов Ю.С., Родин А.А. Мониторинг органических загрязнений природной среды. 500 методик: практическое руководство. 4-е изд. (эл.). М.: Бином. Лаборатория знаний, 2015. 896 c. https://www.books-up.ru/ru/book/monitoring-organicheskih-zagryaznenij-prirodnoj-sredy-500 metodik-3709861 (дата обращения 15.05.2024).
  2. Molchanov S.A., Samakaeva T.O. Complex preparation and processing of multicomponent natural gases at gas-chemical complexes. Moscow: Nedra, 2013. 515 p.
  3. Chemist’s Handbook 21. Chemistry and chemical technology. https://www.chem21.info/info/1159614 (дата обращения 15.05.2024).
  4. http://chemanalytica/com/book/novyy_spravochnik_khimika_i_tekhnologa/11_radioaktivnya_veshchestva_vrednye_veshchestva_gigienicheskie_ normativy/5171 (дата обращения 15.05.2024)
  5. Истомин В.А., Квон В.Г. Предупреждение и ликвидация газовых гидратов в системах добычи газа. М.: ООО “ИРЦ Газпром”, 2004. 509 с.
  6. ГОСТ 33012-2014 Пропан и бутан товарные. Определение углеводородного состава методом газовой хроматографии.
  7. Russian national standard GOST R54484-2011 Liquefied petroleum gases. Methods for determining the hydrocarbon composition.
  8. Krylov V.A., Chernova O. Iu., Sozin A. Iu., Kotkov A.P., Pushkarev G.V. Chromato-mass-spectrometric determination of impurities in high-purity phosphine using capillary adsorption chromatographic columns // Analytics and control. 2013. № 17. Р. 452–458.
  9. Yuzhakova T., Kovács T., Rédey Á., Scurtu R., Kovács Z., Somogyi V., Domokos E., Ráduly I., Ráduly L. PtPd-CeO2/γ-Al2O3 Catalysts for VOC treatment of exhaust gases // Environmental Engineering and Management J. 2012. № 11. P. 1963–1968. https://doi.org/10.30638/ eemj.2012.245.
  10. Russian national standard GOST R55997-2014 Stable gas condensate, broad fraction of light hydrocarbons, liquefied petroleum gases. Determination of methanol by gas chromatography.
  11. ISO 6974-4:2002 Natural gas. Determination of composition with defined uncertainty by gas chromatography. Part 4: Determination of nitrogen, carbon dioxide and C1 to C5 and C6+ hydrocarbons for a laboratory and on-line measuring system using two columns.
  12. ISO 6974-5:2002 Natural gas. Determination of composition with defined uncertainty by gas chromatography method. Part 5. Determination of nitrogen, carbon dioxide and C1 to C5 and C6+ hydrocarbons for a laboratory and on-line process application using three columns.
  13. ISO 6974-6:2002 Natural gas. Determination of composition with defined uncertainty by gaschromatography method. Part 6. Determination of hydrogen, helium, oxygen, nitrogen, carbon dioxide and C1 to C8 hydrocarbons using three capillary columns.
  14. Krylov V.A., Berezkin V.G., Korolev A.A., Chernova O.Yu., Salganskii Yu.M. Gas-adsorption chromatography of reactive compounds on poen-tubular columns with poly(trimethylsilylpropyne) // J. of Anal. Chem. 2003. V. 58. № 4. ID372374.
  15. Berezkin V.G., Muhina V.P., Korolev A.A., Faktullina A.F., Seroshtan V.A. Poly (1-trimethylsilyl-1-propine) — a new porous polymer sorbent for capillary gas chromatography of hydrocarbon raw materials // Zavodskaya laboratoriya. Diagnostika materialov. 2004. № 5. P. 9–13.
  16. Belotserkovskaya V.Yu., Yakovleva E.Yu. Chromatographic properties of poly-(1-trimethylsilyl-1-propyne) // Russ. J. Phys. Chem. A. 2011. V. 85. № 5. P. 939–934.
  17. Yakovleva E.Yu., Belotserkovskaya V.Yu. Separation of hydrocarbon and sulfur-containing gases on a new poly-(1-trimethylsilyl-1-propyne)/poly-(1-phenyl- 1-propyne) mixed stationary phase in the presence of water // J. Anal. Chem. 2013. V. 68. № 7. P. 646–651. https://doi.org/10.1134/S1061934813070125
  18. Yakovleva E.Yu., Patrushev Yu.V., Belotserkovskaya V.Yu. Determination of the composition of the reaction products of the catalytic synthesis of pentafluoroethane by hydrofluorination of perchloroethylene in the mixed stationary phase of poly-(1-trimethylsilyl-1-propine/poly — (1-phenyl-1-propine) by gas chromatography // Kataliz v promyshlennоsti 2015. V. 15. № 2. P. 15–19.
  19. Yakovleva E.Yu., Patrushev Yu.V. Analysis of light hydrocarbons and sulfur compounds on porous layer capillary columns with a nonpolar phase // Catalysis in Industry. 2020. V. 12. № 4. P. 280–286. https://doi.org/10.1134/S2070050420040108
  20. Yakovleva E.Yu., Patrushev Yu.V., Pai Z.P. Analysis of isobutane dehydrogenation products by gas chromatographic method // Kataliz v promyshlennosti. 2017. V. 17. № 6. P. 460–464. https://doi.org/10.18412/1816-0387-2017-6-460-464
  21. Yakovleva E.Yu., Patrushev Yu.V., Pai Z.P. Capillary columns with a sorbent based on functionalized poly (1-trimethylsilyl-1-propyne) for the elution analysis of natural gas // Russ. J. Phys. Chem. A. 2018. V. 92. № 5. P. 1018–1024. https://doi.org/10.1134/S0036024418050357
  22. Yakovleva E.Y., Patrushev Y.V. Determination of hydrocarbons in n-butane on porous layer capillary columns with nonpolar stationary phase // Chromatographia. 2021. V. 84. P. 1095–1104. https://doi.org/10.1007/s10337-021-04092-1
  23. Yakovleva E.Y., Patrushev Y.V. Analysis of residual hydrocarbons and methanol in n-butane on a porous-layer capillary column with poly(1-trimethylsilyl- 1-propyne) // Petrol. Chemistry. 2022. V. 62. № 1. P. 112–120. https://doi.org/10.1134/S0965544122010029
  24. Yakovleva E.Y., Patrushev Y.V. Porous-layer columns with a poly(1-trimethylsilyl-1-propyne) stationary phase for determining of catalytic reactions components, natural gas and its processed products // J. Chromatogr. A. 2023. V. 1693. 463883. https://doi.org/10.1016/j.chroma.2023.463883
  25. Malakhov A.O., Volkov A.V. Modification of polymer membranes for use in organic solvents // Russ. J. of Appl. Chem. 2020. V. 93. № 1. P. 14–24. https://doi.org/10.1134/S1070427220010024.
  26. Березкин В.Г., Королев А.А., Хотимский В.С. Модифицирование адсорбционного слоя политриметилсилилпропина в открытых капиллярных колонках // Известия АН. Серия химическая. 2002. № 4. С. 580–581.
  27. Yakovleva E.Y., Belotserkovskaya V.Y. Chromatographic properties and polarity evaluation of poly-(1-trimethylsilyl-1-propyne) and poly-(1-phenyl-1-propyne) // J. of Anal. Chemistry. 2010. V. 65. № 10. P. 1014–1020.
  28. Yakovleva E.Yu., Belotserkovskaya V.Yu., Litvak G.S., Paukshtis E.A., Babushkin D.E., Fadeeva V.P. Effect of chemical modification on gas chromatographic properties of polymer sorbents Polysorb-1, Haysep Q and diatomite carrier of chromosorb P NAW // Russ. J. of Phys. Chem. A. 2009. V. 83. № 5. P. 849–853.
  29. Patrushev Yu.V., Yakovleva E.Yu., Shundrina I.K., Ivanov D.P., Glasneva T.S. The properties of capillary columns with sorbents based on poly-(1-trimethylsilyl-1-propyne) modified with nitrous oxide // J. Chromatogr. A. 2015. V. 1406. P. 291–298. https://doi.org/10.1016/j.chroma.2015.06.013
  30. Yakovleva E.Yu., Patrushev Y.V., Ivanov D.P., Prosvirin I.P. Gas chromatography columns based on functionalized polymer for the analysis of catalytic reaction products // Chromatographia. 2018. V. 81. P. 1305–1315. https://doi.org/10.1007/s10337-018-3567-4
  31. Kiryukhina Y.V., Khotimskiy V.S., Tepliakov V.V., Roizard D., Barth D. Synthesis and CO2 sorption in poly (1-trimethylsilyl-1-propyne) and polyvinyltrimethylsilane containing ethylene oxide groups and N-butylimidazol-based “ionic liquids” groups // Desalination and Water Treatment. 2011. V. 35.P. 255–262. https://doi.org//5004/dwt.2011.2481
  32. Hongbo Feng, Tao Hong, Shannon M. Mahurin, Konstantinos D. Vogiatzis, Kevin R. Gmernicki, Brian K. Long, Jimmy W. Mays, Alexei P. Sokolov, Nam-Goo K. and Tomonori S. Gas separation mechanism of CO2 selective amidoxime-poly(1-trimethylsilyl-1-propyne) // Membranes Polym. Chem. 2017. V. 8. P. 3341–3350. https://doi.org/10.1039/c7py00056a
  33. Polevaya V.G., Geiger V.Yu., Matson S.M., Shandryuk G.A., Shishatskii S.M., Khotimskii V.S. Synthesis and properties of poly(1-trimethylsilyl-1-propyne) containing quaternary ammonium salts with methyl and ethyl substituents // Polymer Science. Series B. 2019. V. 61. № 5. P. 613–621. https://doi.org/10.1134/S1560090419050130
  34. Matson S.M., Litvinova E.G., Chernikov V.K., Bondarenko G.N., Khotimskiy V.S. Preparation and characterization of poly(1-trimethylsilyl-1-propyne) cross-linked by aliphatic diamines // Polymer. 2021. V. 236. 124308. https://doi.org/10.1016/j.polymer.2021.124308
  35. Гуськов В.Ю., Кудашева Ф.Х. Структура и полярность модифицированных производными урацила пористых полимеров // Сорбционные и хроматографические процессы. 2012. Т. 12. Вып. 6. С. 916–921.
  36. Gus’kov V.Yu., Khabibullina R.A., Kudasheva F.Kh., Ivanov S.P., Garafutdinov R.R. Gas chromatographic investigation of the properties of a styrene-divinylbenzenecopolymer modified by 5-hydroxy-6-methyluracil // Russ. J. of Phys. Chem. A. 2012. V. 86. № 3. P. 475–478. https://doi.org/10.1134/S003602441203013237
  37. Gainullina Y.Y., Gus’kov V.Y., Timofeeva D.V. Polarity of thymine and 6-methyluracil-modified porous polymers, accoding to data from inverse gas chromatography // Russ. J. of Phys. Chem. A. 2019. V. 93. № 12. P. 2477–2481. https://doi.org/10.1134/S0036024419120082
  38. Satyapal S., Filburn T., Trela J., Strange J. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life // Support Applications, Energy & Fuels. 2001. V. 15. № 2. P. 250–255. https://doi.org/10.1021/ef0002391
  39. Yemul O., Imae T. Synthesis and characterization of poly(ethyleneimine) dendrimers // Colloid and Polymer Science. 2008. V. 286. № 6–7. P. 747–752. https://doi.org/10.1007/s00396-007-1830-6
  40. Xu X., Song C., Wincek R., Andrésen J.M., Miller B.G., Scaroni A.W. Separation of CO2 from power plant flue gas using a novel CO2 “Molecular Basket” Adsorbent // Fuel Chem. Div. Prepr. 2003. V. 48. P. 162–163.
  41. Yakovleva E.Y., Belotserkovskaya V.Y. Chromatographic and adsorption properties of the mixed stationary phase poly(1-trimethylsilyl–1-propyne)/poly(1-phenyl–1-propyne) // J. of Anal. Chem. 2011. V. 66. № 6. P. 629–633.
  42. Белоцерковская В.Ю. Хроматографические и адсорбционные свойства поли(1-триметилсилил-1-пропина) и их стабилизация добавлением поли(1-фенил-1-пропина) 02.00.02 — аналитическая химия, диссертация на соискание ученой степени кандидата химических наук, Новосибирск — 2012. 118 с.
  43. Yakovleva E.Y., Patrushev Y.V., Shundrina I.K., Glazneva T.S. Properties of chromatographic columns prepared on the basis of poly(1-trimethylsilyl-1-propyne) modified with organic bases // J. of Chromatogr. A. 2024. № 1723. 464914. P. 1–10. https://doi.org/10.1016/j.chroma.2024.464914
  44. Коротаев Ю.П. Борьба с гидратами при транспортировке природных газов / Ю.П. Коротаев, А.М. Кулиев, Р.М. Мусаев. М.: Недра. 1973. 136 с.
  45. Бухгалтер Э.Б. Предупреждение и ликвидация гидратообразования при подготовке и транспортировке нефтяного и природного газов / Э.Б. Бухгалтер // Нефтепромысловое дело. 1982. Вып. 10 (34). 41 с.
  46. Tipler A., Marotta L., DiSanzo F., Grecsek H. Determination of low levels of methanol in crude oils by multi-dimensional gas chromatography (mdgc) using novel micro channel flow technology // J. Chromatogr. Sci. 2012. V. 50. P. 184–189. https://doi.org/10.1093/chromsci/bmr045
  47. Russian national standard GOST R55997–2014 Stable gas condensate, broad fraction of light hydrocarbons, liquefied petroleum gases. Determination of methanol by gas chromatography.
  48. ASTM D7059-09-2017 Standard Test Method for Determination of Mehtanol in Crude Oil by Multidimensional Gas Chromatography.
  49. ГОСТ Р 8.919-2016 Государственная система обеспечения единства измерений. Эталонные комплексы для аттестации стандартных образцов состава природного газа магистрального и имитаторов природного газа.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of the modifier - polyethyleneimine (PEI) used in the work.

Download (27KB)
3. Fig. 2. Thermogravimetry (a) and differential thermogravimetry (b) curves for PTMSP (solid line), PEI (dashed line).

Download (1MB)
4. Fig. 3. Chromatogram of model mixture I of extreme, unsaturated, aromatic hydrocarbons and methanol on a 30 m × 0.32 mm PTMSP032-PEI column. Temperature programme: 40°C for 3 min, then heating at a rate of 7°C/min to 220°C, evaporator and detector temperatures 240°C; sample volume 1.0 µl; carrier gas - nitrogen at 0.7 bar, detector - flame ionisation.

Download (54KB)
5. Fig. 4. Chromatogram of model mixture I of extreme, unsaturated, aromatic hydrocarbons and methanol on a 30 m × 0.53 mm PTMSP053-PEI column. Temperature programme: 40°C for 3 min, then heating at a rate of 7°C/min to 220°C, evaporator and detector temperatures to 240°C; sample volume 1.0 µl; carrier gas - nitrogen at 0.35 bar, detector - flame ionisation.

Download (54KB)
6. Fig. 5. Chromatogram of model mixture I of extreme, unsaturated, aromatic hydrocarbons and methanol on a 30 m × 0.32 mm PTMSP032 capillary column. Temperature programme: 40°C for 11 min, followed by heating at a rate of 7°C/min to 220°C; evaporator and detector temperatures, 240°C; sample volume, 1.0 µl; carrier gas, helium (0.7 bar), detector, PID.

Download (74KB)
7. Fig. 6. Chromatogram of the components of extreme, aromatic hydrocarbons and methanol of model mixture II (n-butane content > 99.97%); superimposition of three consecutive chromatograms recorded on a 30 m × 0.32 mm PTMSP032-PEI column. Temperature programme: 40°C for 3 min, then heating at a rate of 7°C/min to 220°C, evaporator and detector temperatures to 240°C; sample volume 250 µl; carrier gas - nitrogen at 1.2 atm, detector - flame ionisation.

Download (84KB)

Copyright (c) 2024 Russian Academy of Sciences