Effect of posterior gut reduction on the evolution of rhynchonelliform brachiopods

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Brachiopods are a group of animals known since the Early Cambrian and thrived in the Paleozoic. After the Permian–Triassic extinction, there was a significant reduction in the taxonomic diversity of brachiopods. According to one hypothesis, in the Mesozoic, brachiopods with blind gut could not reinstate their numbers due to the predominance of shelly plankton. We assume that the terebratulids, the most widespread group of modern brachiopods, were able to adapt to the changed composition of food due to a more efficient filtration mechanism of the plectolophous lophophore. Extant rhynchonellids have a blind–closed bulbus end of digestive tract, which is probably used for crushing and digesting shelly plankton.

全文:

受限制的访问

作者简介

А. Selischeva

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: selav21@mail.ru
俄罗斯联邦, Moscow

参考

  1. Афанасьева Г.А., Невесская Л.А. Анализ причин различных последствий кризисных ситуаций на примере замковых брахиопод и бивальвий // Экосистемные перестройки и эволюция биосферы. Вып. 1. М.: Недра, 1994. С. 101–108.
  2. Кузьмина Т.В., Георгиев А.А. Особенности питания брахиоподы Hemithiris psittacea (Rhynchonelliformea: Rhynchonellida) // Сб. материалов всеросс. науч. конф. с междунар. участием, посвященной 85-летию Беломорской биостанции им. Н.А. Перцова Биол. фак-та МГУ им. М.В. Ломоносова. М.: Тов-во науч. изданий КМК, 2023. С. 106–107.
  3. Невесская Л.А. Этапы развития бентоса фанерозойских морей. Палеозой. М.: Наука, 1998. 503 с.
  4. Пунин М.Ю. Исследование организации эпителия пищеварительного тракта замковой брахиоподы Hemithyris psittacea. II. Электронно–микроскопический анализ // Цитология. 1981. Т. 23. № 10. С. 1109–1115.
  5. Пунин М.Ю. Гистологическая организация кишечных эпителиев приапулид, брахиопод, двустворчатых моллюсков и полихет. СПб.: Наука, 1991. 248 с.
  6. Пунин М.Ю., Филатов М.В. Организация железы замковой брахиоподы Hemithyris psittacea // Цитология. 1980. Т. 22. № 3. С. 277–286.
  7. Atkins D. A new species and genus of Kraussinidae (Brachiopoda) with a note on feeding // Proc. Zool. Soc. London. 1958. V. 131. № 4. P. 559–581.
  8. Atkins D., Rudwick M.J.S. The lophophore and ciliary feeding mechanisms of the brachiopod Crania anomala (Müller) // J. Mar. Biol. Assoc. U.K. 1962. V. 42. № 3. P. 469–480.
  9. Bramlette M.N. Mass extinctions of Mesozoic biota // Science. 1965. V. 150. № 3701. P. 1240–1240.
  10. Carlson S.J. The evolution of Brachiopoda // Ann. Rev. Earth and Planetary Sci. 2016. V. 44. P. 409–438.
  11. Chuang S.H. The ciliary feeding mechanisms of Lingula unguis (L.) (Brachiopoda) // Proc. Zool. Soc. London. 1956. V. 127. № 2. P. 167–189.
  12. Chuang S.H. The structure and function of the alimentary canal in Lingula unguis (L.) (Brachiopoda) // Proc. Zool. Soc. London. 1959. V. 132. № 2. P. 283–311.
  13. Chuang S.H. An anatomical, histological, and histochemical study of the gut of the brachiopod, Crania anomala // J. of Cell Science. 1960. V. 3. № 53. P. 9–18.
  14. Clarkson E.N.K. Invertebrate Paleontology and Evolution. L.: George Allen & Unwin, 1979. 323 p.
  15. Curry G.B., Brunton C.H.C. Stratigraphic distribution of brachiopods // Treatise on Invertebrate Paleontology. Part H. Brachiopoda (revised). Vol. 6: Suppl. / Ed. Kaesler R.L. Boulder, Lawrence: Geol. Soc. America; Univ. Kansas Press, 2007. P. 2901–2965.
  16. Dhar S.R., Logan A., Macdonald B.A., Ward J.A. Endoscopic investigations of feeding structures and mechanisms in two plectolophous brachiopods // Invertebr. Biol. 1997. V. 116. № 2. P. 142–150.
  17. D’Hondt J.L. Etude de l’intestin et de la glande digestive de Terebratulina retusa (L.)(Brachiopode). IV. Comparaison avec les activités enzymatiques d’autres brachiopodes du même biotope // Les Brachiopodes Fossiles et Actuels / Eds. Racheboeuf P.R., Emig C. Brest, 1986. P. 301–306. (Actes du 1er Congrès intern. sur les Brachiopodes, Biostratigr. Paléozoïque. V. 4).
  18. D’Hondt J.L., Boucaud–Camou E. Étude l’intestin et de la glande digestive de la Terebratulina retusa (L.) (Brachiopode). Ultrastructure et recherche d’activités amylasiques et protéasiques // Bull. Soc. Zool. France. 1982. V. 107. № 2. P. 207–216.
  19. Elyakova L.A. Distribution of cellulases and chitinases in marine invertebrates // Compar. Biochemistry and Physiology. Pt B: Compar. Biochemistry. 1972. V. 43. № 1. P. 67–70.
  20. Raven J., Falkowski P.G., Katz M.E. et al. The evolution of modern eukaryotic phytoplankton // Science. 2004. V. 305. № 5682. P. 354–360.
  21. Gilmour T.H.J. Ciliation and function of the food-collecting and waste-rejecting organs of lophophorates // Canad. J. Zool. 1978. V. 56. № 10. P. 2142–2155.
  22. Gilmour T.H.J. Food-collecting and waste-rejecting mechanisms in Glottidia pyramidata and the persistence of lingulacean inarticulate brachiopods in the fossil record // Canad. J. Zool. 1981. V. 59. № 8. P. 1539–1547.
  23. Gould S.J., Calloway C.B. Clams and brachiopods – ships that pass in the night // Paleobiology. 1980. V. 6. № 4. P. 383–396.
  24. Guo Z., Flannery-Sutherland J.T., Benton M.J. et al. Bayesian analyses indicate bivalves did not drive the downfall of brachiopods following the Permian–Triassic mass extinction // Nature Commun. 2023. V. 14. № 1. P. 5566.
  25. Hammen C.S. Brachiopod metabolism and enzymes // Amer. Zool. 1977. V. 17. № 1. P. 141–147.
  26. Hancock A. XXXIV. On the organization of the Brachiopoda // Phil. Trans. Roy. Soc. London. 1858. V. 148. P. 791–869.
  27. Harper D.A.T., Popov L.E., Holmer L.E. Brachiopods: origin and early history // Palaeontology. 2017. V. 60. № 5. P. 609–631.
  28. James M.A., Ansell A.D., Collins M.J. et al. Biology of living brachiopods // Adv. in Mar. Biol. 1992. V. 28. P. 175–387.
  29. Kuzmina T.V., Malakhov V.V. Structure of the brachiopod lophophore // Paleontol. J. 2007. V. 41. № 5. P. 520–536.
  30. Kuzmina T.V., Ratnovskaya A.A., Madison A.A. Lophophore evolution from the Cambrian to the present // Paleontol. J. 2021. V. 55. № 10. P. 1109–1140.
  31. Kuzmina T.V., Temereva E.N. Rejection mechanism of plectolophous lophophore of brachiopod Coptothyris grayi (Terebratulida, Rhynchonelliformea) // Moscow Univ. Biol. Sci. Bull. 2018. V. 73. P. 136–141.
  32. Kuzmina T.V., Temereva E.N. Structure of the oral tentacles of early ontogeny stage in brachiopod Hemithiris psittacea (Rhynchonelliformea, Rhynchonellida) // J. Morphol. 2024. V. 285. № 4. P. e21686.
  33. LaBarbera M. Water flow patterns in and around three species of articulate brachiopods // J. Experim. Mar. Biol. Ecol. 1981. V. 55. № 2–3. P. 185–206.
  34. Lee D.E. The terebratulides: the supreme brachiopod survivors // Brachiopoda: Fossil and Recent / Eds. Harper D.A.T., Long S.L., Nielsen C. Wiley, 2008. P. 241–249 (Fossils and Strata. V. 54).
  35. Liow L.H., Reitan T., Harnik P.G. Ecological interactions on macroevolutionary time scales: clams and brachiopods are more than ships that pass in the night // Ecology Letters. 2015. V. 18. № 10. P. 1030–1039.
  36. McCammon H.M. The food of articulate brachiopods // J. Paleontol. 1969. V. 43. P. 976–985.
  37. McCammon H.M. Physiology of the brachiopod digestive system // Ser. in Geol., Notes for Short Course. 1981. V. 5. P. 170–189.
  38. Morton J.E. The functions of the gut in ciliary feeders // Biol. Rev. 1960. V. 35. № 1. P. 92–139.
  39. Nielsen C. The development of the brachiopod Crania (Neocrania) anomala (OF Müller) and its phylogenetic significance // Acta Zool. 1991. V. 72. № 1. P. 7–28.
  40. Popov L.Ye., Holmer L.E. Trimerellida and Chileata // Treatise on Invertebrate Paleontology. Part H, Brachiopoda (Revised). Vol. 2: Linguliformea, Craniiformea, and Rhynchonelliformea (part) / Ed. Kaesler R.L. Boulder, Lawrence: Geol. Soc. America; Univ. Kansas Press, 2000a. P. 184–200.
  41. Popov L.Ye., Holmer L.E. Class Obolellata // Treatise on Invertebrate Paleontology. Part H, Brachiopoda (Revised). Vol. 2: Linguliformea, Craniiformea, and Rhynchonelliformea (part) / Ed. Kaesler R.L. Boulder, Lawrence: Geol. Soc. America; Univ. Kansas Press, 2000b. P. 200–207.
  42. Popov L.Ye., Williams A. Kutorginata // Treatise on Invertebrate Paleontology. Part H, Brachiopoda (Revised). Vol. 2: Linguliformea, Craniiformea, and Rhynchonelliformea (part) / Ed. Kaesler R.L. Boulder, Lawrence: Geol. Soc. America; Univ. Kansas Press, 2000. P. 208–215.
  43. Reed C.G., Cloney R.A. Brachiopod tentacles: ultrastructure and functional significance of the connective tissue and myoepithelial cells in Terebratalia // Cell and Tissue Res. 1977. V. 185. P. 17–42.
  44. Rowell A.J., Caruso N.E. The evolutionary significance of Nisusia sulcata, an early articulate brachiopod // J. Paleontol. 1985. V. 59. P. 1227–1242.
  45. Rudwick M.J.S. Filter–feeding mechanisms in some brachiopods from New Zealand // Zool. J. Linn. Soc. 1962. V. 44. № 300. P. 592–615.
  46. Rudwick M.J.S. Living and Fossil Brachiopods. L.: Hutchinson & Co., 1970. 199 p.
  47. Shi G.R., Shen S. Asian–western Pacific Permian Brachiopoda in space and time: biogeography and extinction patterns // Devel. in Palaeontol. and Stratigr. 2000. V. 18. P. 327–352.
  48. Shu-Zhong S., Shi G.R. Paleobiogeographical extinction patterns of Permian brachiopods in the Asian–western Pacific region // Paleobiology. 2002. V. 28. № 4. P. 449–463.
  49. Steele-Petrović H.M. The physiological differences between articulate brachiopods and filter-feeding bivalves as a factor in the evolution of marine level-bottom communities // Palaeontology. 1979. V. 22. Pt 1. P. 101–134.
  50. Storch V., Welsch U. Elektronenmikroskopische und enzymhistochemische Untersuchungen über die Mitteldarmdrüse von Lingula unguis L. (Brachiopoda) // Zool. Jb., Abt. für Anat. und Ontogenie der Tiere. 1975. V. 94. S. 441–452.
  51. Strathmann R. Function of lateral cilia in suspension feeding of lophophorates (Brachiopoda, Phoronida, Ectoprocta) // Mar. Biol. 1973. V. 23. № 2. P. 129–136.
  52. Tappan H. Primary production, isotopes, extinctions and the atmosphere // Palaeogeogr., Palaeoclimatol., Palaeoecol. 1968. V. 4. № 3. P. 187–210.
  53. Tappan H., Loeblich Jr A.R. Evolution of the oceanic plankton // Earth-Sci. Rev. 1973. V. 9. № 3. P. 207–240.
  54. Temereva E.N., Kuzmina T.V. The first data on the innervation of the lophophore in the rhynchonelliform brachiopod Hemithiris psittacea: what is the ground pattern of the lophophore in lophophorates? // BMC Evol. Biol. 2017. V. 17. P. 1–19.
  55. Thayer C.W. Are brachiopods better than bivalves? Mechanisms of turbidity tolerance and their interaction with feeding in articulates // Paleobiology. 1986. V. 12. № 2. P. 161–174.
  56. Vargas C. de, Audic S., Henry N. et al. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean // Science. 2015. V. 348. № 6237. P. 1261605.
  57. Westbroek P., Yanagida J., Isa Y. Functional morphology of brachiopod and coral skeletal structures supporting ciliated epithelia // Paleobiology. 1980. V. 6. № 3. P. 313–330.
  58. Williams A., Carlson S.J. Affinities of brachiopods and trends in their evolution // Treatise on Invertebrate Paleontology. Part H, Brachiopoda (Revised). Vol. 6: Supplement. Lawrence: Univ. Kansas Press, 2007. P. 2822–2900.
  59. Williams A. Carlson S.J., Brunton C.H.C. et al. A supra–ordinal classification of the Brachiopoda // Phil. Trans. Roy. Soc. London. Ser. B: Biol. Sci. 1996. V. 351. № 1344. P. 1171–1193.
  60. Williams A., James M.A., Emig C.C. et al. Anatomy // Treatise on Invertebrate Paleontology. Part H, Brachiopoda (Revised). Vol. 1: Introduction. Lawrence: Univ. Kansas Press, 1997. P. 7–151.
  61. Zezina O.N. Biogeography of the recent brachiopods // Paleontol. J. 2008. V. 42. № 8. P. 830–858.
  62. Zhang Z., Han J., Zhang X. et al. Soft-tissue preservation in the Lower Cambrian linguloid brachiopod from South China // Acta Palaeontol. Pol. 2004. V. 49. № 2. P. 259–266.
  63. Zhang Z., Han J., Zhang X. et al. Note on the gut preserved in the Lower Cambrian Lingulellotreta (Lingulata, Brachiopoda) from southern China // Acta Zool. 2007a. V. 88. № 1. P. 65–70.
  64. Zhang Z., Holmer L.E., Skovsted C.B. et al. A sclerite-bearing stem group entoproct from the early Cambrian and its implications // Sci. Rep. 2013. V. 3. № 1. P. 1066.
  65. Zhang Z.F., Li G.X., Holmer L.E. et al. An early Cambrian agglutinated tubular lophophorate with brachiopod characters // Sci. Rep. 2014. V. 4. № 1. P. 4682.
  66. Zhang Z., Shu D., Han J. et al. A gregarious lingulid brachiopod Longtancunella chengjiangensis from the Lower Cambrian, South China // Lethaia. 2007b. V. 40. № 1. P. 11–18.
  67. Zhang Z., Shu D., Emig C. et al. Rhynchonelliformean brachiopods with soft‐tissue preservation from the early Cambrian Chengjiang Lagerstätte of South China // Palaeontology. 2007c. V. 50. Pt 6. P. 1391–1402.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of brachiopod anatomy based on representatives of the order Terebratulida, lateral view (gonads, muscles and metanephridia are not shown; after: James et al., 1992, with modifications). Designations: vv – ventral valve, ds – dorsal valve, l – lophophore, mp – mantle cavity, n – stalk, ps – digestive system, tc – trunk coelom.

下载 (102KB)
3. Fig. 2. Generic diversity of brachiopods in paleontological history (after Carlson, 2016, with modifications).

下载 (285KB)
4. Fig. 3. Relationship between the generic diversity of bivalves and brachiopods and the qualitative composition of phytoplankton in the Phanerozoic (after Zezina, 2008, with modifications). The vertical axis for graphs 1 and 2 indicates the number of genera, and the horizontal axis for 1–7 indicates paleontological periods. Designations: 1 – bivalves, 2 – brachiopods, 3 – diatoms, 4 – coccolithophores, 5 – dinoflagellates, 6 – green algae, 7 – cyanobacteria; k – Cambrian, o – Ordovician, s – Silurian, d – Devonian, ka – Carboniferous, p – Permian, t – Triassic, ju – Jurassic, m – Cretaceous, pa – Paleogene, n – Neogene, pl – Pleistocene.

下载 (92KB)
5. Fig. 4. Evolution of rhynchonelliform brachiopods (after Carlson, 2016, with modifications) and diagrams of the structure of the digestive system of representatives of the extinct orders Chileida (ventral view; after Zhang et al., 2007b, with modifications), Kutorginida (ventral view; after Zhang et al., 2007c, with modifications) and modern orders Rhynchonellida, Terebratulida, Thecideida (lateral view; after Nielsen, 1991, with modifications). The red dot indicates the anus, the cross indicates the blind closure of the intestine. Taxonomy of brachiopods after: Carlson, 2016; Harper et al., 2017.

下载 (447KB)
6. Fig. 5. Schemes of the structure of the hinge structures of the rhynchonelliform brachiopod shell on the ventral valve (left column) and dorsal valve (right column): a – strophic surfaces of Chile sp. (Chileata; after Popov, Holmer, 2000a, with modifications); b – primitive hinge of Obolella sp. (Obolellata; after Popov, Holmer, 2000b, with modifications); c – astrophic surfaces of Kutorgina sp. (Kutorginata; Popov, Williams, 2000, with modifications); d – deltidiodont hinge of Hesperorthis sp., Hebertella sp. (Rhynchonellata; after Rudwick, 1970, with modifications); d – cyrtomatodont hinge of Magellania sp. (Rhynchonellata; after Clarkson, 1979, with modifications).

下载 (106KB)
7. Fig. 6. The location of the mantle cavity (highlighted in pink) and the trunk coelom (highlighted in blue) inside the brachiopod shell (after Rowell, Caruso, 1985; James et al., 1992; with modifications): a, b – Lingula anatina (Linguliformea): a – dorsal view, b – lateral view; c – Nisusia sulcata (Rhynchonelliformea: Kutorginata), lateral view; d, d – Magellania sp. (Rhynchonelliformea: Rhynchonellida): d – dorsal view, e – lateral view. The anal opening of the intestine is marked with red dots, the blind closure of the intestine is marked with a cross.

下载 (102KB)
8. Fig. 7. Size range of particles found in the digestive tract of the rhynchonelliform brachiopods Hemithiris psittacea and Terebratalia septentrionalis collected at depths of up to 40 m in the photic zone (after McCammon, 1981). The y-axis shows the proportion of detected particles out of the total number of organic particles as a percentage, and the x-axis shows the particle diameter in µm.

下载 (65KB)
9. Fig. 8. Organization of the brachiopod lophophore: a – cross-section through the lophophore tentacles (after: Kuzmina, Malakhov, 2007); b – cross-section through the brachial axis of the spirolophore (after: Kuzmina et al., 2018, with modifications); c – the predominant role of the internal and external tentacles in the process of accepting and rejecting particles. Designations: bo – brachial axis, bs – brachial fold, vshch – internal tentacles, rl – lateral cilia, ns – external tentacles, pzh – food groove, fr – frontal cilia. Arrows indicate the direction of water flow. The frontal ciliary zone is shown in blue, the lateral zone in green, the abfrontal zone in pink, and the sensitive latero-frontal ciliary cells in yellow.

下载 (202KB)
10. Fig. 9. Organization of the spirolophore (a) and plectolophore (b) lophophores (cross-section through the shell; after Rudwick, 1970, with modifications). Designations: bo – brachial axis of the lophophore, VP – outflow, VC – ventral valve, VHP – inflow, DS – dorsal valve; arrows indicate the directions of water flow, the excretory chamber is shaded gray, the inflow chamber is yellow.

下载 (185KB)
11. Fig. 10. Direction of water flow during filtration in a plectolophore lophophore (after Williams et al., 1997, with modifications). Key: bo – brachial axis, lar – lateral arm, mr – medial arm, ol – base of the lophophore, r – mouth; incoming flow is shown by red arrows, outgoing flow – by blue ones.

下载 (267KB)
12. Fig. 11. Scheme of the proposed mechanism of particle sorting in the spirolophore and plectolophore types of lophophore (according to Rudwick, 1970, with changes): a – entry of a suspension of particles of different sizes into the mantle cavity, b – particle sorting. Large and small particles in the spirolophore enter the internal spirals with equal probability. In the plectolophore, most large particles are retained in the lateral arms. Designations: CP – large particles, FP – small particles, WA – water flow.

下载 (441KB)
13. Fig. 12. Cross-section through the brachial axis of the spirolophore (a) and plectolophore (b) lophophores (after: Temereva, Kuzmina, 2017; Kuzmina, Temereva, 2018). The internal structure of the tentacles is not shown. Designations: ac – abfrontal side, intr – internal tentacles, lf – lateral cilia, ns – external tentacles, fs – frontal side.

下载 (132KB)
14. Fig. 13. Morphology of the digestive system of brachiopods (after Nielsen, 1991, with modifications): a – Hemithiris psittacea (Rhynchonelliformea: Rhynchonellida), blindly closed intestine with a dilation at the end (original diagram); b – Rhynchonelliformea: Terebratulida, blindly closed intestine without dilation (original diagram); c – Novocrania anomala (Craniiformea), the intestine is through and opens through the anus on the posterior side of the body (after Chuang, 1960); d – Lingula anatina (Linguliformea), U-shaped through intestine opens through the anus into the mantle cavity to the right of the mouth (after Chuang, 1959). The mouth and pharynx are marked in orange, the esophagus is marked in yellow, the stomach is marked in green, the digestive gland is marked in red, the pyloric section is marked in blue, and the posterior section of the intestine is marked in purple. The arrows point to the mouth opening, and the dots indicate the anus of the intestine.

下载 (323KB)
15. Fig. 14. Features of the microscopic anatomy of the intestinal tube of the rhynchonellid Hemithiris psittacea (according to Punin, 1981, with changes): a – ultrastructure of cells of the blind expansion of the pyloric section, b – ultrastructure of digestive cells of the digestive gland, c – ultrastructure of secretory cells of the digestive gland, g – cross-section through the middle part of the pyloric section of the intestine, d – cross-section of the blind expansion of the pyloric section. The boundaries of the cells in Figs. g, d are not indicated. Designations: ag – Golgi apparatus, azpc – apical zone of vesicles and tubules, bm – basement membrane, bp – basal plate, vac – vacuole, vacm – invaginations of apical cytoplasmic membrane, gl – lipofuscin granule, d – desmosome, kn – rootlet thread, l – lipid inclusion, MV – microvilli, mit – mitochondrion, mo – muscular sheath, pp – pinocytotic vesicle, ppo – lumen of the pyloric region, pcr – lumen of the blind expansion of the pyloric region, p – cilium, sg – secretory granule, e – epithelium, n – nucleus, n – nucleolus.

下载 (389KB)
16. Fig. 15. Hypothesis of the evolution of rhynchonelliform brachiopods.

下载 (249KB)

版权所有 © Russian Academy of Sciences, 2024