Bioavailability of polycyclic aromatic hydrocarbons in soils contaminated with airborn dust depositions
- Authors: Zavgorodnyaya Y.A.1, Demin V.V.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: No 2 (2025)
- Pages: 245–262
- Section: SOIL CHEMISTRY
- URL: https://gynecology.orscience.ru/0032-180X/article/view/680880
- DOI: https://doi.org/10.31857/S0032180X25020078
- EDN: https://elibrary.ru/COPTOE
- ID: 680880
Cite item
Abstract
A model experiment on PAH biodegradation in the upper horizons of urban soils with different contents of organic matter was carried out. Airborn dust depositions containing polycyclic aromatic hydrocarbons were added to the soil samples, then the soils were incubated at constant humidity and temperature. Total and potentially bioavailable fractions of phenanthrene, pyrene and benz(a)pyrene were determined in the soils after 1, 51, 102, 190 and 365 days of incubation. The total PAH content determined by exhaustive extraction and the amount of their potentially bioavailable fraction extracted with n-butanol decreased exponentially during 365 days of the experiment both in control samples and in mixtures with atmospheric dust. The biodegradation rate of PAHs was proportional to the absolute content of their bioavailable fraction in soils, and for soil with high organic matter content correlated inversely with the hydrophobicity of the three PAHs examined. The relative content of the bioavailable fraction for phenanthrene and pyrene decreased during the experiment, but remained almost constant for benz(a)pyrene. Based on the obtained results, a scheme for transformation of PAHs from airborne dust depositions in soils is proposed, in which, when assessing the bioavailability of PAHs, not only the molecular parameters of polyarenes are taken into account, but also the phase composition of the polluting source material containing PAH. It has been shown that the procedure for determining the potentially bioavailable fraction of polyarenes in soil by directly measuring their concentration in n-butanol together with measuring the total PAH content can be used as a method for environmental assessment of the state of PAH in urban soils when predicting the rate of accumulation and transformation of hydrophobic pollutants.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Yu. A. Zavgorodnyaya
Lomonosov Moscow State University
Author for correspondence.
Email: zyu99@mail.ru
ORCID iD: 0000-0003-0583-2140
Russian Federation, Moscow, 119991
V. V. Demin
Lomonosov Moscow State University
Email: zyu99@mail.ru
Russian Federation, Moscow, 119991
References
- Геннадиев А.Н., Пиковский Ю.И., Цибарт А.С., Смирнова М. А. Углеводороды в почвах: происхождение, состав, поведение (обзор) // Почвоведение. 2015. № 10. С. 1195–1209. https://doi.org/10.7868/S0032180X15100020
- Герасимова М.И., Строганова М.Н., Можарова Н.В., Прокофьева Т.В. Антропогенные почвы: генезис, география, рекультивация. Смоленск: Ойкумена, 2003. 268 с.
- Орлов Д.С. Химия почв. М.: Изд-во Моск. ун-та, 1985. 376 с.
- Прокофьева Т.В., Мартыненко И.А., Иванников Ф.А. Систематика почв и почвообразующих пород Москвы и возможность их включения в общую классификацию // Почвоведение. 2011. № 5. С. 611–623.
- Прокофьева Т.И., Герасимова М.И., Безуглова О.С., Бахматова К.А., Гольева А.А., Горбов С.Н., Жарикова Е.А., Матинян Н.Н., Наквасина Е.Н., Сивцева Н.Е. Введение почв и почвоподобных образований городских территорий в классификацию почв России // Почвоведение. 2014. № 10. С. 1155–1164. https://doi.org/10.7868/S0032180X14100104
- Agency for Toxic Substances and Disease Registry, 1995. Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs). TP-95-20, U.S. Department of Health and Human Service, ATSDR, Atlanta, GA.
- Alexander M. Aging, Bioavailability, and Overestimation of Risk from Environmental Pollutants // Environ. Sci. Technol. 2000. V. 34(20). P. 4259–4265.
- Ananyeva N.D., Susyan E.A., Gavrilenko E.G. Determination of the soil microbial biomass carbon using the method of substrate induced respiration // Eurasian Soil Science. 2011. V. 44. P. 1215–1221. https://doi.org/10.1134/S1064229311030021
- Anderson J.P.E., Domsch K.H. A physiological method for the quantitative measurement of microbial biomass in soils // Soil Biol. Biochem. 1978. V. 10. P. 215–221.
- Bandowe B., Wilcke W. Analysis of Polycyclic Aromatic Hydrocarbons and Their Oxygen-Containing Derivatives and Metabolites in Soils // J. Environ. Quality. 2010. V. 39(4). P. 1349–1358.
- Bogan B.W., Sullivan W.R. Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil // Chemosphere. 2003. V. 52. Р. 1717–1726.
- Bumpus J.A. Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaetech rysosporium // Appl. Environ. Microbiol. 1989. V. 61. P. 2631–2635.
- Cerniglia C.E. Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation // J. Industrial Microbiol. Biotechnol. 1997. V. 19. P. 324–333.
- Cheng H., Sun Q., Bian Y., Han J., Jiang X., Xue J., Song Y. Predicting the bioavailability of polycyclic aromatic hydrocarbons in rhizosphere soil using a new novel in situ solid-phase microextraction technique // Sci. Total Environ. 2024. V. 930. P. 172802. https://doi.org/10.1016/j.scitotenv.2024.172802
- Chung N., Alexander M. Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils. // Environ. Sci. Technol. 1998. V. 32. P. 855–860.
- Chung N., Alexander M. Effect of soil properties on bioavailability andextractability of phenanthrene and atrazine sequestered in soil // Chemosphere. 2002. V. 48. P. 109–115.
- Cui X., Mayer P., Gan J. Methods to assess bioavailability of hydrophobic organic contaminants: principles, operations, and limitations // Environ. Poll. 2013. V. 172. P. 223–234.
- Cuypers C.T., Grotenhuis P.T., Rulkens W. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-b-cyclodextrin and Triton X-100 extraction techniques // Chemosphere. 2002. V. 46. P. 1235–1245.
- Dat N.-D., Chang M.B. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies // Sci. Total Environ. 2017. V. 609. P. 682–693. https://doi.org/10.1016/j.scitotenv.2017.07.204
- Dobbins R.A., Fletcher R.A., Chang H.-C. The Evolution of Soot Precursor Particles in a Diffusion Flame // Combustion and flame. 1998. V. 115. P. 285–298.
- Dean J.R. Bioavailability, Bioaccessibility and Mobility of Environmental Contaminants. Chichester, 2007.
- Doick K.J., Dew N.M., Semple K.T. Linking Catabolism to Cyclodextrin Extractability: Determination of the Microbial Availability of PAHs in Soil // Environ. Sci. Technol. 2005. V. 39. P. 8858–8864.
- Dua M., Singh A., Sethunathan N., Johri A.K. Biotechnology and bioremediation: successes and limitations // Appl. Microbiol. Biotechnol. 2002. V. 59. P. 143–152.
- Duan L., Naidu R. Effect of ionic strength and index cation on the sorption of phenanthrene. // Water, Air, Soil Poll. 2013. V. 224. P. 1700–1717.
- Ehlers G.A.C., Loibner A.P. Linking organic pollutant (bio)availability with geosorbent properties and biomimetic methodology: a review of geosorbent characterisation and (bio)availability prediction // Environ. Poll. 2006. V. 141. P. 494–512.
- Ehlers L.J., Luthy R.G. Contaminant bioavailability in soil and sediment // Environ. Sci. Technol. 2003. V. 37(15). P. 295–302.
- Eweis J.B., Ergas S.J., Chang D.P.Y., Schroeder E.D. Bioremediation Principles. Boston 1998.
- Fang X., Wu L., Zhang O., Zhang J., Wang A., Zhang Y., Zhao J., Mao H. Characteristics, emissions and source identifications of particle polycyclic aromatic hydrocarbons from traffic emissions using tunnel measurement // Transportation Research Part D: Transport and Environment. 2019. V. 67. P. 674–684. https://doi.org/.org/10.1016/j.trd.2018.02.021
- Gao Y., Hu X., Zhou Z., Zhang W., Wang Y., Sun B. Phytoavailability and mechanism of bound PAH residues in filed contaminated soils // Environ. Poll. 2017. V. 222. P. 465–476. http://dx.doi.org/10.1016/j.envpol.2016.11.076
- Guo W., Ren H., Jin Y., Chai Z., Liu B. The bioremediation of the typical persistent organic pollutants (POPs) by microalgae-bacteria consortia: A systematic review // Chemosphere. 2024. V. 355. P. 141852. https://doi.org/10.1016/j.chemosphere.2024.141852
- Haritash A.K., Kaushik C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs) // J. Hazardous Mater. 2009. V. 169. P. 1-15. https://doi.org/10.1016/j.jhazmat.2009.03.137.
- Hatzinger P.B., Alexander M. Effect of aging of chemicals in soil on their biodegradability and extractability // Environ. Sci. Technol. 1995. V. 29. P. 537–545.
- Hundal L.S., Thompson M.L., Laird D.A., Carmo A.M. Sorption of phenanthrene by reference smectites // Environ. Sci. Technol. 2001. V. 35. P. 3456-3461.
- Hwang S., Cutright T.J. Effect of Expandable Clays and Cometabolism on PAH Biodegradability // Environ. Sci. Poll. Res. 2003. V. 10(5). P. 277–280. https://doi.org/0.1065/espr2003.08.167
- Jahin H.S., Barsoum B.N., Tawfic T.A., Headley J.V. Occurrence and distribution of polycyclic aromatic hydrocarbons in the Egyptian aquatic environment // J. Environ. Sci. Health. 2009. V. 44. P. 1237-1243.
- Juhasz A.L. Bioavailability and biodegradation of polycyclic aromatic hydrocarbons // Microbiology Australia. 2014. V. 10 P. 199-200.
- Käcker T., Haupt E.T.K., Garms C., Francke W., Steinhart H. Structural characterisation of humic acid-bound PAH residues in soil by 13C-CPMAS-NMR-spectroscopy: evidence of covalent bonds // Chemosphere. 2002. V. 48. P. 117–131.
- Kelsey J.W., Kottler B.D., Alexander M. Selective chemical extractants to predict bioavailability of soil-aged organic chemicals // Environ. Sci. Technol. 1997. V. 31. P. 214–217.
- Kosheleva N.E., Vlasov D.V., Timofeev I.V., Samsonov T.E., Kasimov N.S. Benzo[a]pyrene in Moscow road dust: pollution levels and health risks // Environ. Geochem. Health. 2023. V. 45. P. 1669–1694. https://doi.org/10.1007/s10653-022-01287-9
- Krauss M., Wilcke W., Zech W. Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban soils. // Environ. Sci. Technol. 2000. V. 34. P. 4335–4340.
- Kuppusamy S., Thavamani P., Venkateswarlu K., Lee Y.B., Naidu R., Megharaj M. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs)contaminated soils: Technological constraints, emerging trends and future directions // Chemosphere. 2017. V. 168. P. 944–968. https://dx.doi.org/10.1016/j.chemosphere.2016.10.115
- Kuzyakov Y., Friedel J.K., K. Stahr K. Review of mechanisms and quantification of priming effects // Soil Biol. Biochem. 2000. V. 32. P. 1485–1498.
- Lei L., Bagchi R., Khodadoust A.P., Suidan M.T., Tabak H.H. Bioavailability prediction of polycyclic aromatic hydrocarbons in field-contaminated sediment by mild extractions // J. Environ. Engineering-ASCE. 2006. V. 132. P. 384–391.
- Liste H.-H., Alexander M. Butanol extraction to predict bioavailability of PAHs in soil // Chemosphere. 2002. V. 46. P. 1011–1017.
- Liu S., Tao S., Liu W., Dou H., Liu Y., Zhao J., Little M.G., Tian Z., Wang J., Wang L., Gao Y. Seasonal and spatial occurrence and distribution of atmospheric polycyclic aromatic hydrocarbons (PAHs) in rural and urban areas of the North Chinese Plain // Environ. Poll. 2008. V. 156. P. 651–656.
- MacLeod C.J.A., Semple K.T. Influence of contact time on extractability and degradation of pyrene in soils // Environ. Sci. Technol. 2000. V. 34. P. 4952–4957.
- Nam K., Alexander M. Role of nanoporosity and hydrophobicity in sequestration and bioavailability: tests with model solids // Environ. Sci. Technol. 1998. V. 32. P. 71–74.
- Nam K., Kim J.Y. Role of loosely bound humic substances and humin in bioavailability of phenanthrene aged in soil // Environ. Poll. 2002. V. 118. P. 427–433.
- Ni J., Luo Y., Wei R., Li X. Distribution patterns of polycyclic aromatic hydrocarbons among different organic carbon fractions of polluted agricultural soils // Geoderma. 2008. V. 146. P. 277–282. https://doi.org/10.1016/j.geoderma.2008.06.001
- Nikiforova E.M., Kosheleva N.E. Polycyclic Aromatic Hydrocarbons in Urban Soils (Moscow, Eastern District) // Eurasian Soil Science. 2011. V. 44 P. 1018–1030. https://doi.org/10.1134/S1064229311090092
- Ortega-Calvo J.J., Harmsen J., Parsons J.R., Semple K.T., Aitken M.D., Ajao C., Eadsforth C., Galay-Burgos M., Naidu R., Oliver R., Peijnenburg W.J.G.M., Römbke J., Streck G., Versonnen B. From Bioavailability Science to Regulation of Organic Chemicals // Environ. Sci. Technol. 2015. V. 49. P. 10255−10264. https://doi.org/10.1021/acs.est.5b02412
- Patel A. B., Shaikh S., Jain K. R., Desai C., Madamwar D. Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches // Frontiers in Microbiology. 2020, V. 11. P. 562813. https://doi.org/10.3389/fmicb.2020.562813
- Peng C., Ouyang Z., Wang M., Chen W., Li X., Crittenden J.C. Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators // Environ. Poll. 2013. V. 178. P. 426–432.
- Pu X., Lee L.S., Galinsky R.E., Carlson G.P. Evaluation of rat model versus a physiologically based extraction test for assessing phenanthrene bioavailability from soils // Toxicol. Sci. 2004. V. 79. P. 10–17.
- Qin S., Li X., Han E., Fan Y., Liu S., Ding Y., Qi S. Strategies and mechanisms for improving the detection accuracy of nonextractable residues of polycyclic aromatic hydrocarbons in soils // Sci. Total Environ. 2024. V. 943. P. 173908. https://doi.org/10.1016/j.scitotenv.2024.173908
- Ravindra K., Sokhi R., Van Grieken R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation // Atmospheric Environment. 2008. V. 42. P. 2895–2921.
- Reichenberg F., Mayer P. Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. // Environ. Toxicol. Chem. 2006. V. 25. P. 1239-45.
- Richnow H.H., Seifert R., Hefter J., Link A., Francke W., Schaefer G., Michaelis W. Organic pollutants associated with macromolecular soil organic matter: Mode of binding // Org. Geochem. 1997. V. 26. P. 745-758.
- Riding M.J., Doick K.J., Martin F.L., Jones K.C., Semple K.T. Chemical measures of bioavailability/bioaccessibility of PAHs in soil: Fundamentals to application // J. Hazardous Mater. 2013. V. 261. P. 687–700. dx.doi.org/10.1016/j.jhazmat.2013.03.033
- Semenova A.V., Popovicheva O.B., Zavgorodnyaya Yu.A., Chichaeva M.A., Kovach R.G., Kosheleva N.E., Minkina T.M., Kasimov N.S. Aerosol Pollution of the Moscow Megacity by Polyaromatic Hydrocarbons: Seasonal Variability and Toxicological Risks // Her. Rus. Acad. Sci. 2023. V. 93. P. 316–329. https://doi.org/10.1134/S1019331623040056
- Semerjian L., Okaiyeto K., Ojemaye M.O., Ekundayo T.C., Igwaran A., Okoh A.I. Global Systematic Mapping of Road Dust Research from 1906 to 2020: Research Gaps and Future Direction // Sustainability. 2021. V. 13. P. 11516. https://doi.org/10.3390/su132011516
- Semple K.T., Morriss A. W. J., Patton G.I. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis // Eur. J. Soil Sci. 2003. V. 54. P. 809–818.
- Shao C., Wang Q., Zhang W., Bennett A., Li Y., Guo J., Im H.G., Roberts W.L., Violi A., Sarathy S.M. Elucidating the polycyclic aromatic hydrocarbons involved in soot inception // Commun. Chem. 2023. V. 6. P. 223. https://doi.org/10.1038/s42004-023-01017-x
- Sijm D, Kraaij R, Belfroid A. Bioavailability in soil or sediment: exposure of different organisms and approaches to study it // Environ. Poll. 2000. V. 108. P. 113-119.
- Singh A., Ward O.P. Biodegradation and Bioremediation: Ser. Soil Biolog. V. 2. N.Y.: Springer-Verlag, 2004.
- Slezakova K, Castro D, Delerue-Matos C, da Conceição Alvim-Ferraza M, Morais S, do Carmo Pereira M. Impact of vehicular traffic emissions on particulate-bound PAHs: levels and associated health risks // Atmospheric Res. 2013. V. 127. P. 141–147.
- Stogiannidis E., Laane R. Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities // Reviews of Environmental Contamination and Toxicology. 2015. V. 234. P. 49–133.
- Tao S., Xu F.L., Liu W.X., Cui Y.H., Coveney R.M. A chemical extraction method for mimicking bioavailability of polycyclic aromatic hydrocarbons to wheat grown in soils containing various amounts of organic matter // Environ. Sci. Technol. 2006. V. 40. P. 2219–2224.
- Tobiszewski M., Namiesnik J. PAH diagnostic ratios for the identification of pollution emission sources. // Environ. Poll. 2012. V. 162. P. 110–119.
- Towell M. G., Vazquez-Cuevas G.M., Bellarby J., Paton G.I., Coulon F., Pollard S.J.T., Semple K.T. Temporal changes in the extractability, bioaccessibility and biodegradation of target hydrocarbons in soils from former refinery facilities // Int. Biodeterioration Biodegradation. 2021. V. 160. 105227. https://doi.org/10.1016/j.ibiod.2021.105227
- Trapido M. Polycyclic aromatic hydrocarbons in Estonian soil: contamination and profiles // Environ. Poll.n. 1999. V. 105. P. 67–74.
- Twigg M.V., Phillips P.R. Cleaning the Air We Breathe – Controlling Diesel Particulate Emissions from Passenger Cars // Platinum Metals Review. 2009. V. 53(1). P. 27–34. https://doi.org/10.1595/147106709X390977
- Umeh A.C., Duana L., Naidu R., Semple K.T. Extremely small amounts of B[a]P residues remobilised in long-term contaminated soils: A strong case for greater focus on readily available and not total-extractable fractions in risk assessment // J. Hazardous Mater. 2019. V. 368. P. 72–80. https://doi.org/10.1016/j.jhazmat.2019.01.030
- Vlasov D., Ramirez O., Luhar A. Road dust in urban and industrial environments: Sources, pollutants, impacts, and management // Atmosphere. 2022. V. 13. P. 607. https://doi.org/10.3390/atmos13040607
- Wei Z., Niu S., Wei Y., Liu Y., Xu Y., Yang Y., Zhang P., Zhou Q., Wang J.J. The role of extracellular polymeric substances (EPS) in chemical-degradation of persistent organic pollutants in soil: A review // Sci. Total Environ. 2024. V. 912. P. 168877. https://doi.org/10.1016/j.scitotenv.2023.168877
- Wilcke W. Polycyclic aromatic hydracarbons (PAHs) in soil – a review // J. Plant Nutrition Soil Sci. 2000. V. 163. P. 229–248.
- Wilcke W. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil // Geoderma. 2007. V. 141. P. 157–166. https://doi.org/10.1016/j.geoderma.2007.07.007
- Wild S.R., Jones K.C. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget // Environ. Poll. 1995. V. 88(1). P. 91–108.
- Wu S.C., Gschwend P.M. Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. // Environ. Sci. Technol. 1986. V. 20. P. 717–725.
- Xing A., Pignatello J.J. Dual-mode sorption of low polarity compounds in glassy poly(vinyl chloride) and soil organic matter // Environ. Sci. Technol. 1997. V. 31. P. 792–799.
- Yemele O.M., Zhao Z., Nkoh J.N., Ymele E., Usman M. A systematic review of polycyclic aromatic hydrocarbon pollution: A combined bibliometric and mechanistic analysis of research trend toward an environmentally friendly solution // Sci. Total Environ. 2024. V. 926. P. 171577. https://doi.org/10.1016/j.scitotenv.2024.171577
- Yu L., Duan L., Naidu R., Semple K.T. Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture // Sci. Total Environ. 2018. V. 613–614. P. 1140–1153. https://doi.org/10.1016/j.scitotenv.2017.09.025
- Yu L., Duan L., Naidu R., Meng F., Semple K.T. Effects of source materials on desorption kinetics of carcinogenic PAHs from contaminated soils // Chemosphere. 2023. V. 335. P. 139095. https://doi.org/10.1016/j.chemosphere.2023.139095
- Yuan S.Y., Chang J.S., Yen J.H., Chang B.V. Biodegradation of phenanthrene inriver sediment // Chemosphere. 2001. V. 43. P. 273–278.
- Zavgorodnyaya Y.A., Chikidova A.L., Biryukov M.V., Demin V.V. Polycyclic aromatic hydrocarbons in atmospheric particulate depositions and urban soils of Moscow, Russia // J. Soils Sediments. 2019. V. 19. P. 3155–3165. https://doi.org/10.1007/s11368-018-2067-3
Supplementary files
