A Fiber Phase-Sensitive Optical Time-Domain Reflectometer for Engineering Geology Application

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A new architecture of a fiber phase-sensitive optical time-domain reflectometer (φ-OTDR, i.e., a distributed acoustic sensor) suitable for engineering geology application is proposed. The sensor is based on a double-pulse scheme in which a pair of pulses is formed using an unbalanced Michelson interferometer. A symmetrical 3 × 3 coupler built into the Michelson interferometer is used to obtain the phase delay needed for the demodulation of the backscattered light. Using the unbalanced Michelson interferometer in the circuit for dual-pulse probe signal generation, it is possible to reduce the requirements for the degree of coherence of the light source, since the delay line introduced between the dual-pulse parts is compensated in the φ‑OTDR fiber under test. As a result, it is possible to use a laser with a wide spectral line (~1 GHz) and generate short (7-ns-wide) laser pulses by directly modulating the laser-diode injection current. In order to reduce the signal fading in the φ-OTDR and to improve the linearity of its response, responses are averaged over 16 optical frequencies. The efficiency of the proposed distributed acoustic sensor has been demonstrated by detecting a strong impact on a cable that was horizontally buried in the ground as well as by detecting seismic waves using a cable inserted in a well at the sea bottom.

作者简介

A. Alekseev

Fryazino Branch of Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: aleksey.e.alekseev@gmail.com
141190, Fryazino, Moscow oblast, Russia

B. Gorshkov

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: aleksey.e.alekseev@gmail.com
119991, Moscow, Russia

V. Potapov

Fryazino Branch of Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: aleksey.e.alekseev@gmail.com
141190, Fryazino, Moscow oblast, Russia

M. Taranov

Fryazino Branch of Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences; Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: aleksey.e.alekseev@gmail.com
141190, Fryazino, Moscow oblast, Russia; 117997, Moscow, Russia

D. Simikin

Fryazino Branch of Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences; Shirshov Institute of Oceanology, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: aleksey.e.alekseev@gmail.com
141190, Fryazino, Moscow oblast, Russia; 117997, Moscow, Russia

参考

  1. Mateeva A., Lopez J., Potters H., Mestayer J., Cox B., Kiyashchenko D., Wills P., Grandi S., Hornman K., Kuvshinov B., Berlang W., Yang Zh., Detomo R. // Geophys. Prospect. 2014. V. 62. P. 679. https://www.earthdoc.org/content/journals/10.1111/1365-2478.12116
  2. Fernández-Ruiz M.R., Soto M.A., Williams E.F., Martin-Lopez S., Zhan Z., Gonzalez-Herraez M., Martins H.F. // APL Photon. 2020. V. 5. P. 030901. https://aip.scitation.org/doi/full/10.1063/1.5139602
  3. Williams E.F., Fernández-Ruiz M.R., Magalhaes R., Vanthillo R., Zhan Z., González-Herráez M., Martins H.F. // Nature commun. 2019. V. 10. P. 1. https://www.nature.com/articles/s41467-019-13262-7
  4. Bakulin A., Silvestrov I., Pevzner R. // The Leading Edge. 2020. V. 39. P. 808. https://doi.org/10.1190/tle39110808.1
  5. Gorshkov B.G., Yüksel K., Fotiadi A.A., Wuilpart M., Korobko D.A., Zhirnov A.A., Konstantin V.S., Turov A.T., Konstantinov Y.A., Lobach I.A. // Sensors. 2022. V. 22. P. 1033. https://www.mdpi.com/1424-8220/22/3/1033/htm
  6. Alekseev A.E., Gorshkov B.G., Potapov V.T. // Laser Phys. 2019. V. 29. P. 055106. https://iopscience.iop.org/article/10.1088/1555-6611/ab0d15
  7. Gorshkov B.G., Alekseev A.E., Taranov M.A., Simikin D.E., Potapov V.T., Ilinskiy D.A. // Appl. Opt. 2022. V. 61. P. 8308. https://doi.org/10.1364/AO.468804
  8. Hartog A.H. An introduction to distributed optical fibre sensors. CRC press. 2017.
  9. Posey R.Jr, Johnson G.A., Vohra S.T. // Electron. Lett. 2000. V. 36. P. 1688. https://digital-library.theiet.org/content/journals/10.1049/el_20001200
  10. Masoudi A., Belal M., Newson T.P. // Measurem. Sci. Technol. 2013. V. 24. P. 085204. https://iopscience.iop.org/article/10.1088/0957-0233/24/8/085204/
  11. Dakin J.P., Lamb C. UK Patent GB2222247A. 1990. https://patents.google.com/patent/GB2222247A/en
  12. Alekseev A.E., Vdovenko V.S., Gorshkov B.G., Potapov V.T., Simikin D.E. // Laser Phys. 2014. V. 24. 115106. https://iopscience.iop.org/article/10.1088/1054-660X/24/11/115106
  13. Alekseev A.E., Vdovenko V.S., Gorshkov B.G., Potapov V.T., Simikin D.E. // Laser Phys. 2015. V. 25. P. 065101. https://iopscience.iop.org/article/10.1088/1054-660X/25/6/065101/
  14. Nikitin S.P., Kuzmenkov A.I., Gorbulenko V.V., Nanii O.E., Treshchikov V.N. // Laser Phys. 2018. V. 28. 085107. https://iopscience.iop.org/article/10.1088/1555-6611/aac714/meta
  15. Hartog A., Kader K. Distributed fiber optic sensor system with improved linearity, US Patent No. 9.170.149. 2015. https://patents.google.com/patent/US9170149B2/en
  16. Lu Y., Zhu T., Chen L., Bao X. (2010). // J. Lightwave Technol. 2010. V. 28. P. 3243. https://opg.optica.org/jlt/abstract.cfm?uri=jlt-28-22-3243
  17. Gorshkov B.G., Alekseev A.E., Simikin D.E., Taranov M.A., Zhukov K.M., Potapov V.T. Sensors. 2022. V. 22. P. 9482. https://doi.org/10.3390/s22239482
  18. Alekseev A.E., Gorshkov B.G., Bashaev A.V., Potapov V.T., Taranov M.A., Simikin D.E. // Laser Phys. 2021. V. 31. P. 035101. https://iopscience.iop.org/article/10.1088/1555-6611/abd936/meta
  19. Hartog A.H., Kotov O.I., Liokumovich L.B. In: Second EAGE Workshop on Permanent Reservoir Monitoring 2013 – Current and Future Trends. European Association of Geoscientists & Engineers. 2013 (July). P. 351. https://doi.org/10.3997/2214-4609.20131301
  20. Alekseev A.E., Gorshkov B.G., Potapov V.T. // Laser Phys. 2019. V. 29. P. 055106. https://iopscience.iop.org/article/10.1088/1555-6611/ ab0d15/meta
  21. Alekseev A.E., Gorshkov B.G., Potapov V.T., Taranov M.A., Simikin D.E. // Laser Phys. 2020. V. 30. P. 035107. https://iopscience.iop.org/article/10.1088/1555-6611/ab70b0/meta
  22. Alekseev A.E., Gorshkov B.G., Potapov V.T., Taranov M.A., Simikin D.E. // Appl. Opt. 2022. V. 61. P. 231. https://opg.optica.org/ao/abstract.cfm?uri=ao-61-1-231
  23. Hartog A.H., Liokumovich LB., Ushakov N.A., Kotov O.I., Dean T., Cuny T., Constantinou A., Englich F.V. // Geophys. Prospect. 2018. V. 66. P. 192. https://doi.org/10.1111/1365-2478.12612
  24. Ogden H.M., Murray M.J., Murray J.B., Kirkendall C., Redding B. // Scien. Rep. 2021. V. 11. P. 1. https://www.nature.com/articles/s41598-021-97647-z
  25. Mermelstein M.D., Posey R., Johnson G.A., Vohra S.T. // Opt. Lett. 2001. V. 26. P. 58. https://doi.org/10.1364/OL.26.000058
  26. Судакова М.С., Белов М.В., Понимаскин А.О., Пирогова А.С., Токарев М.Ю., Колюбакин А.А. // Геофизика 2021. Т. 6. С. 111. https://elibrary.ru/item.asp?id=47926026

补充文件

附件文件
动作
1. JATS XML
2.

下载 (297KB)
3.

下载 (109KB)
4.

下载 (1MB)
5.

下载 (442KB)
6.

下载 (566KB)

版权所有 © А.Э. Алексеев, Б.Г. Горшков, В.Т. Потапов, М.А. Таранов, Д.Е. Симикин, 2023