Формирование фокусных пятен тормозного излучения бетатронов с использованием мишеней малого размера

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Исследованы основные закономерности формирования фокусных пятен тормозного излучения при взаимодействии пучка электронов бетатрона с различными мишенями малого размера на основе модели, определенной ранее при экспериментальном и модельном исследованиях метода измерения фокусных пятен тормозного излучения бетатронов с плоскими мишенями. Размеры фокусных пятен зависят от соотношения между размером мишени вдоль оси пучка электронов и размерами мишени по нормали к оси пучка. Мишени в виде параллелепипеда с соответствующими соотношениями размеров формируют круговые фокусные пятна. Последняя версия метода с использованием щелевого коллиматора определяет размер фокусных пятен мишеней малого размера в виде ширины распределений на половине высоты нормальных аппроксимаций реальных распределений квантов в фокусных пятнах. Выход тормозного излучения из фокусного пятна мишени малого размера намного превышает выход из компоненты вторичного фокусного пятна с такими же размерами при коллимировании тормозного излучения, выходящего из плоской мишени.

Full Text

Restricted Access

About the authors

В. Б. Сорокин

Инженерная школа неразрушающего контроля и безопасности Национального исследовательского Томского политехнического университета

Author for correspondence.
Email: sorvb@tpu.ru
Russian Federation, 634050, Томск, ул. Савиных, 7

References

  1. Ускорители электронов для радиационной дефектоскопии. https://atomsz.ru/postavka-oborudovaniya/defektoskop/
  2. Сорокин В.Б., Луценко А.С., Генцельман В.Г. // ПТЭ. 2018. №2. С. 38.https://doi.org/10.7868/S0032816218020088
  3. Сорокин В.Б. // ПТЭ. 2020. №1. С. 10.https://doi.org/10.31857/S0032816219060247
  4. Сорокин В.Б. Зонд для диагностики пучков заряженных частиц. // ПТЭ. 2015. №3. С. 85.https://doi.org/10.7868/S0032816215020251
  5. Рычков М.М., Каплин В.В., Смолянский В.А. // ПТЭ. 2020. №1. C. 101.https://doi.org/10.31857/S0032816219060223
  6. Gambaccini M., Cardarelli P., Taibi A. et al. // Nucl. Instrum. Methods. Phys. Res. B. 2011. V. 269. P. 1157.http://doi.org/10.1016/j.nimb.2011.02.089

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of generation of TI from the target and implementation of the method of determining the size of the TI focal spot using a slit collimator.

Download (26KB)
3. Fig. 2. Distribution of electrons in the beam on a flat target of a serial 4 MeV betatron.

Download (26KB)
4. Fig. 3. Distributions of quanta in the focal spot of a serial 4 MeV betatron in the acceleration plane and in the plane normal to it.

Download (10KB)
5. Fig. 4. Dependences FWHMX,Y of the dose distribution in the detector in the acceleration plane of the serial betatron and in the plane normal to it on the slit size of the slit collimator SX,Y.

Download (14KB)
6. Fig. 5. Scheme of MMR against the background of electron distribution in the beam.

Download (19KB)
7. Fig. 6. Distributions of quanta in the focal spot in the betatron acceleration plane for different MMR sizes along the electron beam axis, as well as their normal approximations.

Download (16KB)
8. Fig. 7. Dependence of FWHMxef of the normal approximation of the distribution of quanta in the focal spot on the size of the MMR along the axis of the electron beam.

Download (10KB)
9. Fig. 8. Dependences of the sizes FWHMXef f and FWHMYeff of the focal spot for a fixed size of the MMP along the acceleration plane B and for different sizes of the MMP along the beam axis L on the size H in the direction normal to the acceleration plane.

Download (16KB)
10. Fig. 9. Scheme of MMR in the form of a ball against the background of the distribution of electrons in the beam.

Download (16KB)
11. Fig. 10. Distributions of quanta in the focal spot in the acceleration plane and in the plane normal to it, as well as their normal approximations for the MMR in the form of a sphere.

Download (14KB)
12. Fig. 11. Dependences of the FWHM of the dose distribution in the detector in the acceleration plane and in the plane normal to it on the slit sizes of the slit collimator SX and SY when determining the sizes of the focal spot formed by the MMR in the form of a ball, using a slit collimator.

Download (13KB)
13. Fig. 12. Scheme of the MMR in the form of a parallelepiped against the background of the distribution of electrons in the beam to form a focal spot with specified dimensions in different directions based on the modernization of the target unit of a serial betatron.

Download (24KB)
14. Fig. 13. Distributions of quanta in the focal spot in the acceleration plane and in the plane normal to it, as well as their normal approximations.

Download (14KB)
15. Fig. 14. Dependences of the FWHM of the dose distribution in the detector in the acceleration plane and in the plane normal to it on the sizes of the collimator slit SX and SY when determining the sizes of the focal spot formed by the MMR in the form of a parallelepiped, using a slit collimator.

Download (15KB)
16. Fig. 15. Scheme of formation of a TI with a secondary focal spot of small size by collimating the TI from a flat target.

Download (34KB)
17. Fig. 16. Distribution of quanta in the secondary focal spot in the plane of the collimator surface.

Download (16KB)
18. Fig. 17. Scheme of testing the model and analysis of the TI betatron with an energy of 18 MeV.

Download (30KB)
19. Fig. 18. Experimental dose distribution upon introduction of a test strip [5] into the betatron TI and its comparison with the model dose distribution.

Download (15KB)
20. Fig. 19. Distributions of quanta in planes at different distances from the electron-irradiated end of the MMR for quanta with deviation angles from the beam axis of up to 10°.

Download (15KB)
21. Fig. 20. Distribution of quanta in the focal spot formed by the MMR strip for quanta with different angles of deviation from the beam axis.

Download (16KB)
22. Fig. 21. Dependence of the focal spot size of TI quanta with deviation angles from the beam axis smaller than δ on the boundary of the range of deviation angles δ.

Download (12KB)
23. Fig. 22. Distributions of quanta in the focal spot in the acceleration plane and in the plane normal to it, as well as their normal approximations.

Download (14KB)
24. Fig. 23. Dependences of the FWHM of the dose distribution in the detector in the acceleration plane and in the plane normal to it on the sizes of the collimator slit SX and SY when determining the sizes of the focal spot formed by the MMR in the form of a parallelepiped, using a slit collimator.

Download (16KB)

Copyright (c) 2024 Russian Academy of Sciences