Fastest Motion of a System of Interacting Mass Points along a Rough Horizontal Straight Line

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An optimal control problem for a system of material points that move along a horizontal rough line is considered. The system moves due to forces of the interaction between the points and the forces of Coulomb’s dry friction acting between points and the underlying line. Only forward movement is allowed. A control algorithm is proposed which provides the fastest transition of the system from one state of rest to another.

Авторлар туралы

I. Ananievski

Ishlinsky Institute for Problems in Mechanics RAS

Хат алмасуға жауапты Автор.
Email: anan@ipmnet.ru
Russia, Moscow

Әдебиет тізімі

  1. Chernous’ko F.L. The optimum rectilinear motion of a two-mass system // JAMM, 2002, vol. 66, no. 1, pp. 1–7.
  2. Chernous’ko F.L. Analysis and optimization of the rectilinear motion of a two-body system // JAMM, 2011, vol. 75, no. 5, pp. 493–500.
  3. Bolotnik N., Pivovarov M., Zeidis I., Zimmermann K. The undulatory motion of a chain of particles in a resistive medium // ZAMM, 2011, vol. 91, no. 4, pp. 259–275.
  4. Bolotnik N., Pivovarov M., Zeidis I., Zimmermann K. The undulatory motion of a chain of particles in a resistive medium in the case of a smooth excitation mode // ZAMM, 2013, vol. 93, no. 12, pp. 895–913.
  5. Wagner G.L., Lauga E. Crawling scallop: friction-based locomotion with one degree of freedom // J. Theor. Biol., 2013, no. 324, pp. 42–51.
  6. Chernous’ko F.L. Translational motion of a chain of bodies in a resistive medium // JAMM, 2017, vol. 81, no. 4, pp. 256–261.
  7. Bolotnik N.N., Gubko P.A., Figurina T.Yu. Possibility of a non-reverse periodic rectilinear motion of a two-body system on a rough plane // Mech. Solids, 2018, vol. 53, pp. 7–15.
  8. Bolotnik N.N., Figurina T.Yu. Reversible motion of a chain of interacting bodies along a straight line along a rough horizontal plane // J. Comput. Syst. Sci. Int., 2023, no. 3. (in Press)
  9. Figurina T.Y. Optimal control of system of material points in a straight line with dry friction // J. Comput. Syst. Sci. Int., 2015, vol. 54, no. 5, pp. 671–677.
  10. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The Mathematical Theory of Optimal Processes. N.Y.: Wiley&Sons Inc., 1962. 360 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (47KB)

© И.М. Ананьевский, 2023