Redistribution of mass during penetration of a non-uniform cloud into an accelerating gas layer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The unsteady axisymmetric motion of an ideal perfect gas is numerically simulated, arising from the interaction of a spherical cloud with a gas layer that was initially in gravitational equilibrium in a constant gravitational field. The cloud matter is considered to contain an impurity, the particles of which serve as markers and do not affect the motion of the medium. It has been established that the most massive central part of the condensation is deeply immersed inside the layer, while the parameters of the cumulative jet significantly depend on the gas density at the periphery of the cloud. Under the assumption that the impurity substance is optically thin to radiation, the intensity distribution in the picture plane is determined and the direction of the maximum intensity value is revealed.

Full Text

Restricted Access

About the authors

K. V. Krasnobaev

Lomonosov Moscow State University; Space Research Institute of the RAS (IKI)

Author for correspondence.
Email: kvk-kras@list.ru
Russian Federation, Moscow; Moscow

References

  1. Zababakhin E.I., Nechaev M.N. Electromagnetic-field shock waves and their cumulation // JETP, 1958, vol. 6, no. 2, pp. 345–351.
  2. Zababakhin E.I. Cumulation and Instability. Snezhinsk: VNIITF Pub., 1998. 112 p. (in Russian)
  3. Andreev S.G., Babkin A.V., Baum F.A. et al. Physics of Explosion. Vol. 2 / ed. by Orlenko L.P. Moscow: Fizmatlit, 2002. 648 p. (in Russian)
  4. Lavrent’ev M.A. Cumulative charge and the principles of its operation // Uspekhi Mat. Nauk, 1957, vol. 12, no. 4(76), pp. 41–56.
  5. Lavrentiev M.A., Shabat B.V. Problems of Hydrodynamics and Their Mathematical Models. Moscow: Nauka, 1977. (in Russian)
  6. Gekle S., Gordillo J.M., Meer D., Lohse D. High-speed jet formation after solid object impact // Phys. Rev. Lett., 2009, vol. 102, pp. 034502.
  7. Gekle S., Peters I.R., Gordillo J.M., Meer D. et al. Supersonic air flow due to solid-liquid impact // Phys. Rev. Lett., 2010, vol. 104, pp. 024501.
  8. Williams H., Sprittles J., Padrino J., Denissenko P. Effect of ambient gas on cavity formation for sphere impacts on liquids // Phys. Rev. Fluids, 2022, vol. 7, pp. 094003.
  9. Tenorio-Tagle G., Franco J., Bodenheimer P., Rozyczka M. Collisions of high-velocity clouds with the Milky Way: the formation and evolution of large-scale structures // Astron. & Astrophys., 1987, vol. 179, pp. 219–230.
  10. Baranov V.B., Krasnobaev K.V. Hydrodynamic Theory of Space Plasma. Moscow: Nauka, 1977. 335 p.
  11. Spitzer L. (Jr.) Physical Processes in the Interstellar Medium. N.Y.: Wiley, 1978.
  12. Tielens A.G.G.M. The Physics and Chemistry of the Interstellar Medium. Cambridge: Univ. Press, 2005. 495 p.
  13. Shin M.-S., Stone J.M., Snyder G.F. The magnetohydrodynamics of shock–cloud interaction in three dimensions // The Astrophys. J., 2008, vol. 680, pp. 336–348.
  14. Yirak K., Frank A., Cunningham A.J. Self-convergence of radiatively cooling clumps in the interstellar medium // The Astrophys. J., 2010, vol. 722, pp. 412–424. https://doi.org/10.1088/0004-637X/722/1/412
  15. Goldsmith K.J.A., Pittard J.M. The interaction of a magnetohydrodynamical shock with a filament // Mon. Not. R. Astron. Soc., 2016, vol. 461, pp. 578–605. https://doi.org/10.1093/mnras/stw1365
  16. Kotova G.Yu., Krasnobaev K.V. Acceleration of a spherical neutral shell produced by an ionization–shock front in an inhomogeneous interstellar medium // Astron. Lett., 2009, vol. 35, no. 3, pp. 189–198.
  17. Pittard J.M. Tails of the unexpected: the interaction of an isothermal shell with a cloud // Mon. Not. R. Astron. Soc., 2011, vol. 411, pp. L41–L45.
  18. Deharveng L. , Schuller F., Anderson L.D. et al. A gallery of bubbles. The nature of the bubbles observed by Spitzer and what ATLASGAL tells us about the surrounding neutral material // Astron. & Astrophys., 2010, vol. 523, pp. 1–135.
  19. Krasnobaev K.V., Kotova G.Yu., Tagirova R.R. Two-dimensional perturbations of the accelerated motion of inhomogeneous gas layers and shells in the interstellar medium // Astron. Lett., 2015, vol. 41, no. 3–4, pp. 104–113.
  20. Kotova G.Yu., Krasnobaev K.V. Interaction of an accelerating layer with a cloud: formation of tails and cumulative jets // Mon. Not. R. Astron. Soc., 2020, vol. 492, pp. 2229–2235 .
  21. Kotova G.Yu., Krasnobaev K.V. Hydrodynamic instabilities in the models of the formation of young stellar objects // Fluid Dyn., 2022, vol. 57, suppl. 1, pp. S26–S34.
  22. Golubev V.V. Studies on the Theory of Liquid Jet Impact and Some of Its Applications. Moscow: MSU Pub., 1975.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of clot penetration into the layer. Dashed line – contact gap.

Download (9KB)
3. Fig. 2. Isochores of the medium (top) and impurity (bottom) at time t = 2; Ad = 20, Bd = –0.5.

Download (46KB)
4. Fig. 3. Isochores of the medium (top) and impurity (bottom) at time t = 8; Ad = 20, Bd = –0.5.

Download (40KB)
5. Fig. 4. Isochores of the impurity at the stage of formation of the cumulative jet at times t = 10, 12, 14 (Ad = 20, Bd = –0.5).

Download (41KB)
6. Fig. 5. Coordinate xʹ in the picture plane.

Download (8KB)
7. Fig. 6. Dependence Iν(xʹ) at the stage of cavity formation. Dashed line – intensity distribution at t = 0.

Download (20KB)
8. Fig. 7. Dependence Iν(xʹ) at the stage of jet formation.

Download (17KB)

Copyright (c) 2024 Russian Academy of Sciences