Sorbent for extraction-chromatographic separation of lanthanides, based on Prefilter resin impregnated with 2-ethylhexylposphonic acid mono-2-ethylhexyl ester

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The characteristics of the sorbent for extraction-chromatographic separation of lanthanides, made by impregnating Prefilter resin with mono-2-ethylhexyl ether of 2-ethylhexylphosphonic acid, have been studied. Using the example of Yb and Lu separation, it is shown that sorption from nitric acid solutions ([HNO3] < 4 M) under static conditions can be described by the linear dependence of the logarithm of the lanthanide distribution ratio on the acidity of the solution. Under dynamic conditions, the elution rate of the mobile phase has the most significant effect on the efficiency of separation of Yb and Lu. The temperature and particle size of the sorbent have weaker influence. A comparison of the characteristics of the proposed sorbent and its analog, the LN2 sorbent (EiChrom, USA), showed their identity. It is shown that the Prefilter based sorbent provides a lower (compared to LN2) leachability of the extractant.

Texto integral

Acesso é fechado

Sobre autores

K. Bobrovskaya

Kapitsa Research Institute of Technology, Ulyanovsk State University

Email: rostislavkuznetsov@yandex.ru
Rússia, Ulysanovsk

R. Kuznetsov

Kapitsa Research Institute of Technology, Ulyanovsk State University

Autor responsável pela correspondência
Email: rostislavkuznetsov@yandex.ru
Rússia, Ulysanovsk

M. Lisova

Kapitsa Research Institute of Technology, Ulyanovsk State University

Email: rostislavkuznetsov@yandex.ru
Rússia, Ulysanovsk

A. Fomin

Kapitsa Research Institute of Technology, Ulyanovsk State University

Email: rostislavkuznetsov@yandex.ru
Rússia, Ulysanovsk

Bibliografia

  1. Van de Voorde M., Van Hecke K., Cardinaels T., Binnemans K. // Coord. Chem. Rev. 2019. Vol. 382. P. 103. https://doi.org/10.1016/j.ccr.2018.11.007
  2. Salek N., Vosoughi S., Afshar P., Salehi B.M., Mehrabi M. // J. Nucl. Res. Appl. 2022. Vol. 2. N 3. P. 28. https://doi.org/10.24200/jon.2022.1024
  3. Kabay N., Cortina J.L., Trochimczuk A., Streat M. // React. Funct. Polym. 2010. Vol. 70. P. 484. https://doi.org/10.1016/j.reactfunctpolym.2010.01.005
  4. Shenxu Bao, Yongping Tang, Yimin Zhang, Liang Liang // Chem. Eng. Technol. 2016. Vol. 39. N 8. P. 1377. https://doi.org/10.1002/ceat.201500324
  5. Sanku M.G., Forsberg K., Svärd M. // J. Chromatogr. A. 2022. Vol. 1676. ID 463278. https://doi.org/10.1016/j.chroma.2022.463278
  6. Monroy-Guzman F., del Carmen de la Cruz Barba C., Jaime Salinas E., Garibay-Feblés V., Entzana T.N.N. // Metals. 2020. Vol. 10. P. 1390.
  7. Сайт компании Eichrom, https://www.eichrom.com/products/ln-resins/ Дата обращения 05.06.2024.
  8. Сайт компании Triskem, https://www.triskem-international.com/scripts/files/6215151d0db8b5.49670533/ PS_TK211-Resin_EN_220222.pdf Дата обращения 05.06.2024.
  9. Smith C.D., Dietz M.L. // Talanta. 2021. Vol. 222. ID 121541. https://doi.org/10.1016/j.talanta.2020.121541
  10. Smith C.D., Momen Md.A., Salske S.C., Dietz M. // Microchem. J. 2023. Vol. 193. ID 109175. https://doi.org/10.1016/j.microc.2023.109175
  11. Drader J.A., Zhu L., Smith P., McCann K., Boyes S., Braley J.C. // Sep. Purif. Technol. 2016. Vol. 163. P. 352. https://doi.org/10.1016/j.seppur.2016.03.005
  12. Nishihama S., Harano T., Yoshizuka K. // Sep. Sci. Technol. 2017. Vol. 53. N 7. P. 1027. https://doi.org/10.1080/01496395.2017.1310895
  13. Monroy-Guzman F., Barreiro F.J., Salinas E.J., Treviño A.L.V. // World J. Nucl. Sci. Technol. 2015. Vol. 5. P. 111. http://doi.org/10.4236/wjnst.2015.52011
  14. Horwitz E.P., McAlister D.R., Dietz M.L. // Sep. Sci. Technol. 2006. Vol. 41. N 10. P. 2163. http://dx.doi.org/10.1080/01496390600742849
  15. Bertelsen E.R., Jackson J.A., Shafer J.C. // Solvent Extr. Ion Exch. 2020. Vol. 38. N 3. P. 251. https://doi.org/10.1080/07366299.2020.1720958
  16. Сайт компании TrisKem International, https://www.triskem-international.com/ scripts/files/5f4634457e5157.33298423/ PS_Prefilter-Resin_EN_160927.pdf. Дата обращения 28.02.2024.
  17. Сайт компании Eichrom. https://www.eichrom.com/wp-content/uploads/2018/03/Prefilter-Bulk-and-Cartridge.pdf
  18. Qi D. // Hydrometallurgy of Rare Earths. Elsevier, 2018. P. 187–389. https://doi.org/10.1016/B978-0-12-813920-2.00002-7
  19. Zhengshui H., Ying P., Wanwa M., Xun F. // Solvent Extr. Ion Exch. 1995. Vol. 13. P. 965. https://doi.org/10.1080/07366299508918312
  20. Horwitz E.P., Bloomquist C.A.A. // J. Inorg. Nucl. Chem. 1972. Vol. 34. N 12. P. 3851. https://doi.org/10.1016/0022-1902(72)80033-2
  21. Амбул Е.В., Голецкий Н.Д., Медведева А.И., Наумов А.А., Пузиков Е.А., Афонин М.А., Шишкин Д.Н. // Радиохимия. 2022. Т. 64. № 3. С. 233. doi: 10.31857/S0033831122030054
  22. Horwitz E.P., McAlister D.R., Bond A.H., Barrans R.E., Williamson J.M. // Appl. Radiat. Isot. 2005. Vol. 63. P. 23. https://doi.org/10.1016/j.apradiso.2005.02.005
  23. Алексеев И.Е., Кротов С.А. // Радиохимия. 2023. Т. 65. № 2. C. 172. https://doi.org/10.31857/S0033831123020065

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependences of the distribution coefficients DW (a) and retention factors k' (b) of ytterbium and lutetium on the acidity of the solution. Sorbent LN2P (50–100 μm): ● – Yb, ■ – Lu; sorbent LN2 (50–100 μm): ○ – Yb, □ – Lu.

Baixar (88KB)
3. Fig. 2. Effect of elution rate and particle size distribution of the sorbent on the separation of Yb (○) and Lu (□) at 50°C: a – 1 ml/min, 50–100 μm; b – 5 ml/min, 50–100 μm; c – 1 ml/min, 100–150 μm; d – 5 ml/min, 100–150 μm. The table in the figure field shows the proportions of ytterbium ω(Yb) and lutetium ω(Lu) in zone I (“pure ytterbium”), II (mixing) and III (“pure Lu”).

Baixar (509KB)
4. Fig. 3. Effect of temperature on HETT for a sorbent with a particle size of 50–100 μm: ● – Yb, ■ – Lu; for a sorbent with a particle size of 100–150 μm: ○ – Yb, □ – Lu.

Baixar (77KB)
5. Fig. 4. Effect of elution rate on HETT for a sorbent with particle sizes of 50–100 (a) and 100–150 µm (b): at 25°C: ○ – Yb, □ – Lu; at 50°C: ● – Yb, ■ – Lu.

Baixar (196KB)
6. Fig. 5. Peak width of Yb (●) and Lu (■) depending on temperature (sorbent 50–100 μm, elution rate 1 ml/min).

Baixar (59KB)
7. Fig. 6. Effect of temperature on the position of the Yb (○ – sorbent 50–100 μm, ● – sorbent 100–150 μm) and Lu (□ – sorbent 50–100 μm, ■ – sorbent 100–150 μm) peaks and on the separation factor (△ – sorbent 50–100 μm, ♦ – sorbent 100–150 μm).

Baixar (66KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024