Preparation of suspension of nanodiamonds with immobilized scandium isotopes for in vivo research

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The conditions for preparing a suspension of detonation synthesis nanodiamonds (NDs) with immobilized scandium in solutions that meet the requirements to solutions for intravenous administration of radiopharmaceuticals (RPs) based on 44Sc and 47Sc are determined. The possibility of quantitatively binding scandium by ND samples in isotonic solutions with the required pH, containing a minimum amount of NDs, is demonstrated. The parameters of the Freundlich and Langmuir adsorption isotherms and ΔG of adsorption under optimal conditions for the most promising ND sample are determined. The conditions found for obtaining NDs with immobilized scandium isotopes will allow further in vivo researches.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Kazakov

Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS

Хат алмасуға жауапты Автор.
Email: adeptak92@mail.ru
Ресей, Moscow

D. Pavlova

Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS; Mendeleev University of Chemical Technology of Russia

Email: adeptak92@mail.ru
Ресей, Moscow; Moscow

I. Ushakov

National Research Tomsk Polytechnic University

Email: adeptak92@mail.ru
Ресей, Tomsk

E. Nesterov

National Research Tomsk Polytechnic University

Email: adeptak92@mail.ru
Ресей, Tomsk

V. Skuridin

National Research Tomsk Polytechnic University

Email: adeptak92@mail.ru
Ресей, Tomsk

E. Odintsova

Bentonit Company

Email: adeptak92@mail.ru
Ресей, Moscow

S. Vinokurov

Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS

Email: adeptak92@mail.ru
Ресей, Moscow

B. Myasoedov

Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS; Interdepartmental Center for Analytical Research in Physics, Chemistry, and Biology, RAS

Email: adeptak92@mail.ru
Ресей, Moscow; Moscow

Әдебиет тізімі

  1. Giri P.M., Banerjee A. // Cancers. 2023. Vol. 15. ID 2256.
  2. Elumalai K., Srinivasan S., Shanmugam A. // Biomed. Technol. 2024. Vol. 5. P. 109–122.
  3. Yun W.S., Kim J., Lim D.-K., Kim D.-H., Jeon S.I., Kim K. // Nanomaterials. 2023. Vol. 13. ID 2225.
  4. Kazakov A.G., Babenya J.S., Ekatova T.Y., Vinokurov S.E., Khvorostinin E.Y., Ushakov I.A., et al. // Radiochemistry. 2024. Vol. 66. № 2. P. 191–197.
  5. Kazakov A.G., Babenya J.S., Ekatova T.Y., Vinokurov S.E., Khvorostinin E.Y., Ushakov I.A., et al. // Radiochemistry. 2024. Vol. 66. N 2. P. 198–204.
  6. Kazakov A.G., Ekatova T.Y., Vinokurov S.E., Khvorostinin E.Y., Ushakov I.A., Zukau V.V, et al. // Radiochemistry. 2024. Vol. 66. № 2. P. 205–210.
  7. Skotland T., Iversen T.G., Llorente A., Sandvig K. // Adv. Drug Deliv. Rev. 2022. Vol. 186. ID 114326.
  8. Yakovlev R.Y., Dogadkin N.N., Kulakova I.I., Lisichkin G.V., Leonidov N.B., Kolotov V.P.// Diamond. Relat. Mater. 2015. Vol. 55. P. 77–86.
  9. Karpukhin A.V., Avkhacheva N.V., Yakovlev R.Y., Kulakova I.I., Yashin V.A., Lisichkin G.V., Safronova V.G. // Cell. Biol. Int. 2011. Vol. 35. № 7. P. 727–733.
  10. Dolmatov V.Y., Rudenko D.V., Burkat G.K., Aleksandrova A.S., Vul’ A.Yu., Aleksenskii A.E., et al. // J. Superhard Mater. 2019. Vol. 41. N 3. P. 169–177.
  11. Qaim S.M. // J. Radioanal. Nucl. Chem. 2024. Vol. 333. P. 3577–3584.
  12. Государственная фармакопея Российской Федерации. XV изд. Раздел 3.5: Радиофармацевтические лекарственные препараты. https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-15/3/3-5/
  13. Volkov D.S., Krivoshein P.K., Mikheev I.V., Proskurnin M.A. // Diamond Relat. Mater. 2020. Vol. 110. ID 108121.
  14. Buchatskaya Y., Romanchuk A., Yakovlev R., Shiryaev A., Kulakova I., Kalmykov S. // Radiochim. Acta. 2015. Vol. 103. N 3. P. 205–211.
  15. Казаков А.Г., Гаращенко Б.Л., Яковлев Р.Ю., Винокуров С.Е., Мясоедов Б.Ф. // Радиохимия. 2020. T. 62. № 6. C. 519–525.
  16. Ahmadijokani F., Molavi H., Peyghambari A., Shojaei A., Rezakazemi M., Aminabhavi T.M., Arjmand M. // J. Environ. Manag. 2022. Vol. 316. ID 115214.
  17. Liu J.-H., Yang S.T., Chen X.-X., Wang H. // Curr. Drug Metab. 2012. Vol. 13. P. 1046–1056.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Kinetics of scandium sorption (440 ng) by NA samples (100 μg/ml) at pH 2, 3, 4 and 5 (a–g, respectively).

Жүктеу (279KB)
3. Fig. 2. Equilibrium values ​​of the degree of scandium sorption (5 μg) by the RUDDM sample at pH 4.0 in 0.9% NaCl from 1 ml of solution.

Жүктеу (62KB)
4. Fig. 3. Freundlich (a) and Langmuir (b) adsorption isotherms for scandium sorption by a RUDDM sample in 0.9% NaCl with pH 4.0.

Жүктеу (147KB)
5. Fig. 4. Presentation of experimental data and obtained adsorption isotherms in Qe–Ce coordinates.

Жүктеу (77KB)
6. Fig. 5. Dependence of ln(Qe/Ce) on Qe during scandium sorption by RUDDM in 0.9% NaCl with pH 4.0.

Жүктеу (72KB)

© Russian Academy of Sciences, 2024