Structure and IR Spectroscopic Study of Sodium Tris(monoiodacetato)uranylate

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Synthesis, X-ray diffraction and IR spectroscopic studies of NaUO2(mia)3 (I) crystals were carried out, where mia is the monoiodoacetate ion CH2ICOO. Uranyl-containing complexes [UO2(mia)3] in the structure correspond to the crystal chemical formula A(B01)3, where A = UO22+, B01 = mia. Using coordination sequences, we analyzed the features of the 3D framework, which is realized in the structure of crystals of I and contains 8 crystallographically nonequivalent U or Na atoms. A semiempirical calculation and comparison of the calculated and experimental vibration frequencies in the IR spectrum of I were carried out.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Serezhkin

Samara National Research University

Email: lserezh@samsu.ru
Ресей, ul. Akademika Pavlova 1, Samara, 443011

M. Grigoriev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: lserezh@samsu.ru
Ресей, Leninskii pr. 31, str. 4, Moscow, 119071

D. Mitinа

Samara National Research University

Email: lserezh@samsu.ru
Ресей, ul. Akademika Pavlova 1, Samara, 443011

V. Losev

Samara National Research University

Email: lserezh@samsu.ru
Ресей, ul. Akademika Pavlova 1, Samara, 443011

L. Serezhkina

Samara National Research University

Хат алмасуға жауапты Автор.
Email: lserezh@samsu.ru
Ресей, ul. Akademika Pavlova 1, Samara, 443011

Әдебиет тізімі

  1. Kalaj M., Carter K.P., Cahill C.L. // Acta Crystallogr. Sect. B. 2017. V. 73. P. 234. https://doi.org/10.1107/S2052520617001639
  2. Carter K.P., Kalaj M., McNeil S., Kerridge A., Schofield M.H., Ridenour J.A., Cahill C.L. // 2021. Vol. . P. 1128. https://doi.org/10.1039/D0QI01319F
  3. Сережкина Л.Б., Митина Д.С., Вологжанина А.В., Григорьев М.С., Пушкин Д.В., Сережкин В.Н. // ЖНХ. 2022. Т. 67. № 11. С. 1581 (Serezhkina L.B., Mitina D.S., Vologzhanina A.V., Grigoriev M.S., Pushkin D.V., Serezhkin V.N. // Russ. J. Inorg. Chem. 2022. Vol. 67. № 11. P. 1769. https://doi.org/10.1134/S0036023622600915).
  4. Сережкина Л.Б., Вологжанина А.В., Митина Д.С., Сережкин В.Н. // Радиохимия. 2022. Т. 64. № 6. С. 521 (Serezhkina L.B., Vologzhanina A.V., Mitina D.S., Serezhkin V.N. // Radiochemistry. 2022. Vol. 64. № 6. P. 685. doi: 10.1134/S1066362222060030).
  5. Zachariasen W.H., Plettinger H.A. // Acta Crystallogr. 1959. Vol. 12. P. 526.
  6. Шарло Г. Методы аналитической химии. Количественный анализ неорганических соединений. Часть 2. Пер. с фр. М.: Химия, 1969. 1206 с.
  7. SAINT-Plus (Version 7.68). Madison, Wisconsin, USA: Bruker AXS Inc., 2007.
  8. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. Vol. 48. Part 1. P. 3.
  9. Sheldrick G.M. // Acta Crystallogr. Sect. А. 2015. Vol. 71. № 1. P. 3.
  10. Sheldrick G.M. // Acta Crystallogr. Sect. C. 2015. Vol. 71. № 1. P. 3. doi: 10.1107/S2053229614024218
  11. Cережкин В.Н., Михайлов Ю.Н., Буслаев Ю.А. // ЖНХ. 1997. Т. 42. № 12. С. 2036.
  12. Serezhkin V.N., Vologzhanina A.V., Serezhkina L.B., Smirnova E.S., Grachova E.V., Ostrova P.V., Antipin M.Yu. // Acta Crystallogr. Sect. B. 2009. Vol. 65. Part 1. P. 45.
  13. Serezhkin V.N., Savchenkov A.V., Pushkin D.V., Serezhkina L.B. // Appl. Solid State Chem. 2018. № 2. P. 2. doi: 10.18572/2619–0141–2018–2–3–2–16
  14. Savchenkov A.V., Uhanov A.S., Grigoriev M.S., Fedoseev A.M., Pushkin D.V., Serezhkina L.B., Serezhkin V.N. // Dalton Trans. 2021. Vol. 50. P. 4210.
  15. Templeton D.H., Zalkin A., Ruben H., Templeton L.K. // Acta Crystallogr. Sect. C. 1985. Vol. 41. P. 1439.
  16. Navaza A., Charpin P., Vigner D., Heger G. // Acta Crystallogr. Sect. C. 1991. Vol. 47. P. 1842.
  17. Cambridge Structural Database System. Cambridge Crystallographic Data Centre, 2022.
  18. O’Keffe M. // Z. Kristallogr. 1995. Vol. 210. № 12. P. 905. https://doi.org/10.1524/zkri.1995.210.12.905
  19. Bondi A. // J. Phys. Chem. 1964. Vol. 68. № 3. P. 441.
  20. Шевченко А.П., Сережкин В.Н. // ЖФХ. 2004. Т. 78. № 10. С. 1817 (Shevchenko A.P., Serezhkin V.N. // Russ. J. Phys. Chem. 2004. Vol. 78. № 10. Р. 1598).
  21. Сережкина Л.Б., Сережкин В.Н., Пушкин Д.В., Лосев В.Ю. Колебательная спектроскопия неорганических соединений. Самара: Самарский ун-т, 2009. 132 с.
  22. Грибов Л.А., Дементьев В.А. Методы и алгоритмы вычислений в теории колебательных спектров молекул. М.: Наука, 1981. 356 с.
  23. Филатов С.К., Кривовичев С.В., Бубнова Р.С. Общая кристаллохимия. СПбУ, 2018. С. 114.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. 1. Fragment of 3D structure I, comprising five uranyl ions, three Na+ ions, and 15 mia anions. For the central atom U(VI), LDPE is shown in the form of a hexagonal prism, and for the rest, the equivalent KP UO8 is shown in the form of a hexagonal bipyramid. For the two mia ions of the [UO2(mia)3] complexes, all atoms are shown, including iodine atoms and CH2 groups, and for the rest, only the atoms of the OCO carboxyl groups are indicated to simplify the figure. Any complex [UO2(mia)3]– due to the oxygen atoms of three mia ions binds three Na+ ions (for example, the complex for which the LDPE of a uranium atom is depicted). Each Na+ ion forms a distorted octahedron of Neo 6 (shown on the left) or NaO5I (on the right). The oxygen atoms of Mno6 octahedra belong to six different mia ions. In the NaO5I octahedra, oxygen atoms belong to five different mia ions, one of which also forms an additional Na–I bond (Table 3).

Жүктеу (83KB)
3. Fig. 2. Fragment of structure I, demonstrating the intramolecular contact I⋅⋅⋅O, which corresponds to the LDPE face of the seventh rank passing through the center of the shown two-sided arrow perpendicular to the axis of its propagation. The face rank (RG) indicates the minimum number of chemical bonds connecting atoms whose LDPE has a common face.

Жүктеу (83KB)
4. Fig. 3. Numbering of atoms in the grouping selected for calculating the IR spectrum.

Жүктеу (63KB)
5. Fig. 4. Atomic displacement vectors for the calculated oscillations. The numbers given indicate the values of the vp frequencies.

Жүктеу (256KB)
6. Fig. 5. Theoretical (a) and experimental (b) INFRARED spectra of NaUO2(CH2ICOO)3. The red segments correspond to the calculated oscillation frequencies and intensities.

Жүктеу (218KB)

© Russian Academy of Sciences, 2024