Formation of cascaded Gordon–Mills–Welch sequences for digital information transmission systems

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the modification of the algorithm for determining the decimation index vector, which is the main component of the Gordon—Mills—Welch sequence (GMWS) synthesis method, an algorithm for determining the decimation index vector A(l, m, n, r1, r2) for the synthesis of cascaded GMWS (CGMWS) with a period N = 2S — 1 = 2lmn — 1 (l > 2) in the GF[((2l)m)n] field by summing the sequences formed on the basis of decimation according to the obtained indices of the symbols of the basic M-sequence (MS). The modification of the algorithm consists in combining the vectors of the decimation indices for various combinations of the parameters r1 and r2 in the expression for the resulting vector. The results of calculating the maximum values of the equivalent linear complexity (ELC) of cascaded LCGMWS and conventional LGMWS GMWSs for periods 212–1 ≤ N ≤ 236–1 are presented. It is shown that the ELC of cascaded exceeds the ELC of conventional GMWSs, with an increase in the period the gain BS = LCGMWS/LGMWS increases, and for the period N = 236–1 it is equal to BS=36 = 2.25.

About the authors

V. G. Starodubtsev

Mozhaisky Military Space Academy

Author for correspondence.
Email: vgstarod@mail.ru
Russian Federation, Zhdanovskaya Street, 13, Saint Petersburg, 197198

References

  1. Вишневский В.М., Ляхов А.И., Портной С.Л., Шахнович И.В. Широкополосные беспроводные сети передачи информации. М.: Техносфера, 2005.
  2. Golomb S.W., Gong G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar. Cambridge: Univ. Press, 2005.
  3. Ипатов В.П. Широкополосные системы и кодовое разделение сигналов. Принципы и приложения. М.: Техносфера, 2007.
  4. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. 2-е изд. / Пер. с англ. М.: Вильямс, 2003.
  5. CDMA: прошлое, настоящее, будущее. М.: МАС, 2003.
  6. Ипатов В.П. Периодические дискретные сигналы с оптимальными корреляционными свойствами. М.: Радио и связь, 1992.
  7. Golomb S.W. // IEEE Trans. 1992. V. AES-28. № 2. P. 383.
  8. No Jong-Seon. // IEEE Trans. 1996. V. IT-42. № 1. P. 260.
  9. Zhu J., Cheng F., Tong L. et al. // 2nd Int. Conf. on Information Science and Engineering. Hangzhou. 4–6 Dec. 2010. N.Y.: IEEE, 2010. P. 2107. https://doi.org/10.1109/ICISE.2010.5691504
  10. Стародубцев В.Г. // РЭ. 2023. Т. 68. № 7. С. 676.
  11. Klapper A., Chan A., Goresky M. // IEEE Trans. 1993. V. IT-39. № 1. P. 177.
  12. Chung H.B., No J.S. // IEEE Trans. 1999. V. IT-45. № 6. P. 2060.
  13. Gong G., Dai Z.D., Solomon W. Golomb S.W. // IEEE Trans. 2000. V. IT-46. № 2. P. 474.
  14. Golomb S.W., Gong G., Dai Z.D. // Discrete Mathematics. 2000. V. 219. P. 279.
  15. Gong G. // IEEE Trans. 1996. V. IT-42. № 1. P. 263.
  16. Tang X. // Science China Inform. Sci. 2007. V. 50. № 4. P. 551.
  17. Стародубцев В.Г. // РЭ. 2020. Т. 65. № 2. С. 15.
  18. Стародубцев В.Г. // РЭ. 2021. Т. 66. № 4. С. 380.
  19. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки. М.: Мир, 1976.Ipatov V.P. Spread Spectrum and CDMA. Principles and Applications. New York: John Wiley and Sons Ltd. 2005.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences