Electromagnetic fields transformation in UWB infinite antenna arrays in the cluster excitation mode

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Infinite ultra-wideband (UWB) arrays of TEM horns and Vivaldi antennas were considered. At the first stage we used an array model in the quasi-periodic excitation mode in the form of a Floquet channel. It was implemented in the HFSS electromagnetic modeling system. At the second stage the array parameters in the cluster excitation mode were determined using the calculated scattering matrix of the Floquet channel. Two clusters of TEM horns and Vivaldi antennas were analyzed. They were finite along one coordinate and infinite along the other. It was investigated how the cluster size, frequency, amplitude distribution of exciting waves, scanning in the sector of angles affect the shape of the amplitude-phase distribution of the field in the array aperture. It was shown that the field distribution in the emitting aperture may differ significantly from the distribution of exciting waves at the inputs of the array elements. An explanation of this effect based on the representation of the field in the array in the form of a superposition of its eigen waves was proposed.

Texto integral

Acesso é fechado

Sobre autores

S. Bankov

Kotelnikov Institute or Radioengineering and Electronics RAS

Email: duplenkova@yandex.ru
Rússia, Mokhovaya Str. 11, build. 7, Moscow, 125009

M. Duplenkova

Kotelnikov Institute or Radioengineering and Electronics RAS

Autor responsável pela correspondência
Email: duplenkova@yandex.ru
Rússia, Mokhovaya Str. 11, build. 7, Moscow, 125009

Bibliografia

  1. Иммореев И.Я. // РЭ. 2009. Т. 54. № 1. С. 5.
  2. Haghpanah M., Kashani Z.G., Param A.K. // 30th Intern. Conf. on Electrical Engineering (ICEE). IEEE. 2022. P. 42.
  3. Panzer B., Gomez-Garcia D., Leuschen C. et al. // J. Glaciology. 2013. V. 59. № 214. P. 244.
  4. Rodriguez-Morales F., Gogineni S., Leuschen C.J. et al. // IEEE Trans. 2013. V. GRS-52. № 5. P. 2824.
  5. Patel A., Paden J., Leuschen C. et al. // IEEE Trans. 2014. V. GRS-53. № 5. P. 2547.
  6. Liu H., Yang Z., Yue Y. et al. // NDT & E International. 2023. V. 133. Article No. 102726.
  7. Yarovoy A.G., Ligthart L.P. // Proc. Int. Symp. on Antennas for Radar Earth Observation. Delft. 8–9 Jun. 2000. Delft: Univ. of Technology.
  8. McGrath D.T., Baum C.E. // IEEE Trans. 1999. V. AP-47. № 3. P. 469.
  9. Elmansouri M.A., Ha J., Filipovic D.S. // IEEE Trans. 2017. V. AP-65. № 3. P. 1374.
  10. Elmansouri M.A., Filipovic D.S. // IET Microw. Antennas Propag. 2017. V. 11. № 15. P. 2134.
  11. Калошин В.А., Ле Н.Т., Фролова Е.В. // Журн. радиоэлектроники. 2020. № 4.http://jre.cplire.ru/jre/apr20/2/text.pdf
  12. Fedorov V.M., Efanov M.V., Ostashev V.Y. et al. // Electronics. 2021. V.10. № 9. Article No. 1011.https://doi.org/10.3390/electronics10091011
  13. Банков С.Е., Дупленкова М.Д. // РЭ. 2018. Т. 63. № 1. С. 25.
  14. Банков С.Е., Калошин В.А., Нгуен К.З. // РЭ. 2018. Т. 63. № 7. С. 702.
  15. Банков С.Е., Калошин В.А., Ле Н.Т. // РЭ. 2018. Т. 63. № 12. С. 1263.
  16. Амитей Н., Галиндо В., Ву Ч. Теория и анализ фазированных антенных решеток. М.: Мир, 1974.
  17. Банков С.Е., Курушин А.А., Гутцайт Э.М. Решение оптических и СВЧ задач с помощью HFSS. М.: Оркада, 2012.
  18. Каценеленбаум Б.З. Теория нерегулярных волноводов с медленно меняющимися параметрами. М.: Изд-во АН СССР, 1961.
  19. Банков С.Е., Скородумова Е.А. // РЭ. 2015. Т. 60. № 5. С. 470.
  20. Банков С.Е., Дупленкова М.Д. // РЭ. 2015. Т. 60. № 6. С. 618.
  21. Грачёв Г.Г., Калошин В.А. // Журн. радиоэлектроники. 2020. № 1.http://jre.cplire.ru/jre/jan20/6/text.pdf.
  22. Bankov S.E., Duplenkova M.D. // IEEE8th All-Russian Microwave Conf. (RMC). Moscow, Russian Federation. 2022. P. 178.https://doi.org/10.1109/RMC55984.2022.10079619
  23. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1977.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The Floquet cell has a general appearance as a microwave multipole: 1 is the port corresponding to the transmission line; 2, 3 are the ports corresponding to the waves of the Floquet waveguide.

Baixar (29KB)
3. Fig. 2. Floquet channel for the speaker grid, GU is the boundary condition.

Baixar (116KB)
4. Fig. 3. Two variants of a cluster, infinite in one coordinate and finite in the other.

Baixar (59KB)
5. Fig. 4. Tension of the pole of the cluster ten-ruporov on Part 2 GGC: Lucha deviation 0 (1), 15 (2), 30 (3) and 45 degrees (4), scanning in H- (A) and e-planes (B).

Baixar (120KB)
6. Fig. 5. Field strength for a cluster of speakers at a frequency of 5 GHz: beam deflection 0 (1), 15 (2), 30 (3) and 45 degrees (4), scanning in the H- (a) and E-planes (b).

Baixar (129KB)
7. Fig. 6. Tension of the fields of the cluster ten-ruporov on Part 8 GGC: Lucha deviation 0 (1), 15 (2), 30 (3) and 45 degrees (4), scanning in H- (A) and e-planes (B).

Baixar (130KB)
8. Fig. 7. Tightness of the field of the cluster Tem-ruporov with cosinusoidal crimp amplitude repeater of Part 5 GGC: Lucha deviation 0 (1), 15 (2), 30 (3) and 45 degrees (4), scanning in H- (A) and e-planes (B).

Baixar (118KB)
9. 8. The Floquet channel for the Vivaldi antenna array, GU is the boundary condition.

Baixar (108KB)
10. Fig. 9. Tension of the pole of the cluster antenna Vivaldi of Part 2 GGC: Lucha deviation 0 (1), 15 (2), 30 (3) and 45 degrees (4), scanning in H- (A) and e-planes (B).

Baixar (114KB)
11. Fig. 10. Tension of the pole of the cluster antenna Vivaldi of Part 5 GGC: Lucha deviation 0 (1), 15 (2), 30 (3) and 45 degrees (4), scanning in H- (A) and e-planes (B).

Baixar (119KB)
12. Fig. 11. Tension of the pole of the cluster antenna Vivaldi of Part 8 GGC: Lucha deviation 0 (1), 15 (2), 30 (3) and 45 degrees (4), scanning in H- (A) and e-planes (B).

Baixar (134KB)
13. Fig. 12. Dependence of the real (1, 3) and imaginary (2, 4) parts of the scattering parameter S31 of the Floquet cell for the Vivaldi antenna array on the scanning angle at a frequency of 8 GHz at L = 180 (solid curves) and L = 90 (dashed).

Baixar (73KB)
14. Fig. 13. Tension of the pole in Part 8 GGC: Lucha deviation 0 (1), 15 (2), 30 (3) and 45 degrees (4), scanning in H- (A) and e-planes (B).

Baixar (113KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024