Formation of a nutation line contour under conditions of a strong inhomogeneous field in flow-thru nuclear magnetic spectrometers with a rapid change in flow velocity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problems arising in experiments using liquid flows are considered. The advantages of using nuclear magnetic resonance-based devices for flow parameter control both in research and in industrial parameter measurements are noted. A new method for forming a nutation line contour with a given profile from a liquid flow with magnetization inversion has been developed, and the features of controlling the processes of this contour formation have been established. Experimental studies have been conducted and the possibility of applying the new method for measuring the liquid flow rate q with rapid changes in the flow velocity has been proven. New coefficients in the Bloch equations are proposed that describe the motion of three magnetization components (Mx’, My and Mz) in the nutation coil in a liquid flow in a strong inhomogeneous field. The nutation line contour has been calculated for various parameters B0 and q. The minimum value of the magnetic field inhomogeneity has been established taking into account q and the parameters of the current medium, which must be ensured in the nutation coil location sector when forming the line contour at the noise level to implement the “magnetic” mark mode when measuring q. A comparison of theoretical calculations with experimental data was carried out.

Full Text

Restricted Access

About the authors

V. V. Davydov

Peter the Great Saint Petersburg Polytechnic University; Bonch-Bruevich Saint Petersburg State University of Telecommunications

Author for correspondence.
Email: Davydov_vadim66@mail.ru
Russian Federation, Polytechnicheskaya Str, 29, St.Petersburg, 195251; Bol’shevikov Ave., 22, St.Petersburg, 193232

A. A. Gol’dberg

Peter the Great Saint Petersburg Polytechnic University

Email: Davydov_vadim66@mail.ru
Russian Federation, Polytechnicheskaya Str, 29, St.Petersburg, 195251

R. V. Davydov

Peter the Great Saint Petersburg Polytechnic University; Bonch-Bruevich Saint Petersburg State University of Telecommunications; Alferov University

Email: Davydov_vadim66@mail.ru
Russian Federation, Polytechnicheskaya Str, 29, St.Petersburg, 195251; Bol’shevikov Ave., 22, St.Petersburg, 193232; Khlopin Str., 8, build.3, St.Petersburg, 194021

References

  1. Gizatullin B., Gafurov M., Vakhin A. et al. // Energy and Fuels. 2019. V. 33. № 11. P. 10923.
  2. Marusina M.Y., // . 2018. V. 19. № 10. P. 2771.
  3. Zargar M., Johns M.L., Aljindan L.M. et al. // SPE Production & Operation, 2021. V. 36. № 2. P. 423.
  4. Gizatullin B., Gafurov M., Rodionov A. et al. // Energy and Fuels. 2018. V. 32. № 11. P. 11261.
  5. Marusina M.Y., Bazarov B.A., Galaidin P.A. et al. // Measurement Techniques. 2014. V. 57. № 5. P. 461.
  6. Davydov V., // . 2022. V. 15. № 2. P. 457.
  7. Kashaev R.S., // . 2019. V. 86. № 5. P. 890.
  8. Marusina M.Y., Bazarov B.A., Galaidin P.A. et al. // Measurement Techiques. 2014. V. 57. № 6. P. 580.
  9. O’Neill K.T., Brancato L., Stanwix P.L. et al. // Chem. Eng. Sci. 2019. V. 202. P. 222.
  10. Давыдов В.В.//Оптика и спектроскопия. 2016. Т. 121. № 1. С. 20.
  11. Eremina R., // . 2023. V. 54. № 4-5. P. 435.
  12. Жерновой А.И., Дьяченко С.В. // ЖТФ. 2015. Т. 85. № 4. С. 118.
  13. Deng F., Xiao L., Wang M. et. al. // Appl. Magnetic Resonance. 2016. V. 47. № 10. P. 1239.
  14. Sadovnikova M.A., Murzakhanov F.F., // . 2012. V. 15. № 17. P. 6204.
  15. Davydov R., // 15. № 5. P. 1748.
  16. Deng F., Xiong C., Chen S. // Petroleum Exploration and Development. 2020. V. 47. P. 855.
  17. Давыдов В. В., Мязин Н. С., Давыдов Р.В. // Измерительная техника. 2022. №6. С. 52.
  18. Давыдов В. В., Мязин Н. С., Давыдов Р.В. // Измерительная техника. 2022. №4. С. 49.
  19. Давыдов В. В., Величко Е. Н., Дудкин В. И., Карсеев А. Ю. //Метрология. 2014. № 5. С. 32.
  20. Давыдов В.В., Дудкин В.И., Николаев Д.И. и др. // РЭ. 2021. Т. 66. №10. С. 1017.
  21. Кашаев Р. С., Козелкова В. О., Овсеенко Г. А. и др. // Измерительная техника. 2023. №5. С. 52.
  22. Deng F., Xiong C., Chen S. // Petroleum Exploration and Development. 2020. V. 47. P. 855.
  23. Fouilloux P., et al. // . 2023. V. 253. P. 126307.
  24. Safiullin K., et al. // . 2022. V. 210. P. 110010.
  25. Cao G., // . 2023. V. 13. № 1. P. 4558.
  26. Leshe A. Nuclear Induction. Berlin: Verlag Wissenschaften, 1963.
  27. Abragam A. The Principles of Nuclear Magnetism. Qxford: Clarendon Press, 1961.
  28. Jacobsohn B.A., Wangsness R.K. // Phys. Rev. 1948. V. 73. № 9. P. 942.
  29. Bloch F., Wangsness R.K. // Phys. Rev. 1950. V. 78. № 1. P. 82.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Nutation line contour based on the dependence of the change in the NMR signal amplitude Us on fn for a flow of tap water at T = 288.2 (1), 293.1 (2) and 308.6 (3); water flow rate qопт = 2.59 ml/s; field induction B1 = 32.16 μT.

Download (79KB)
3. Fig. 2. Nutation line contour based on the dependence of the change in the NMR signal amplitude Us on fn for a flow of magnetized liquid (tap water) at induction B0 = 0.56071 T, qopt = 2.59 ml/s and different values ​​of inhomogeneity ΔB0 (mT∙cm–1) and induction B1 (μT), respectively: 5.58, 2.69 (curve 1), 11.45, 2.69 (curve 2), 17.01, 4.06 (curve 3).

Download (96KB)
4. Fig. 3. Experimental setup for studying liquid flows under various conditions with the function of a nuclear magnetic flowmeter-relaxometer: 1 - circulation pump, 2 - specially shaped vessel made of non-magnetic material, 3 - polarizer magnet, 4 - electromagnet pole pieces, 5 - electromagnet pole piece position adjustment screws, 6 - magnetic field coils for pole pieces, 7 - correction coils, 8 - special power supply unit for correction coils, 9 - nutation coil, 10 - B0 field modulation coils, 11 - magnetic shield, 12 - nutation generator, 13 - connecting section of pipeline, 14 - NMR signal recording coil, 15 - analyzer vessel, 16 - electromagnet with Ba field value control, 17 - Ba field modulation coils, 18 - multifunctional power supply unit for electromagnets 6 and 16, 19 - NMR signal recording device, 20 – oscilloscope, 21, 23 – radio frequency generator, 22 – control and processing device, 24 – two-channel frequency meter.

Download (124KB)
5. Fig. 4. Contour of the nutation line of the tap water flow with magnetization at qопт = 2.59 ml/s in a field B0 = 1.5871 T (central zone between the pole pieces of the magnetic system) and different values ​​of the magnetic field inhomogeneity ΔB0 in the zone of the nutation coil placement (mT∙cm–1) and B1 (μT): 29.36, 2.69 (curve 1), 70.93, 3.42 (curve 2), 98.88, 5.45 (curve 3).

Download (94KB)
6. Fig. 5. Contour of the nutation line of the tap water flow with magnetization at qопт = 2.59 ml/s in a field B0 = 1.5871 T (central zone between the pole pieces of the magnetic system) and different values ​​of the magnetic field inhomogeneity ΔB0 in the zone of the nutation coil placement (mT∙cm–1) and B1 (μT): 27.62, 2.69 (curve 1), 114.43, 5.67 (curve 2).

Download (81KB)
7. Fig. 6. Contour of the nutation line based on the results of calculating the magnetization component Mz for a tap water flow at tn = 62 ms, T1 = 1.27 s, T2 = 0.89 ms and different values ​​of the magnetic field inhomogeneity ΔВ0 in the area of ​​the nutation coil (mT∙cm–1) and B1 (μT): a) 0.0047, 2.69; b) 34.9252, 3.11; c) 102.0519, 5.45; d) 274.3253, 12.97.

Download (134KB)

Copyright (c) 2024 Russian Academy of Sciences