Natural regeneration of Picea abies (Pinaceae) in mid-boreal bilberry-type spruce forest: growth, root system development and nutrient uptake in different microsites
- Authors: Kireeva A.V.1, Novichonok E.V.1, Sofronova I.N.1, Genikova N.V.1, Afoshin N.V.1
-
Affiliations:
- Karelian Research Centre of the Russian Academy of Sciences
- Issue: Vol 60, No 3 (2024)
- Pages: 44-62
- Section: Biology of Resource Species
- URL: https://gynecology.orscience.ru/0033-9946/article/view/674400
- DOI: https://doi.org/10.31857/S0033994624030034
- EDN: https://elibrary.ru/PUDJBW
- ID: 674400
Cite item
Abstract
The study investigated the effects of the microsites (intact forest floor, logs, tree-fall holes with ruined forest floor) on growth, root system development, and nutrient uptake in naturally regenerating Norway spruce (Picea abies (L.) H. Karst) plants in a mid-boreal bilberry-type spruce stand. We detected no significant effect of the microsites on the plants’ relative height increment. Relative trunk diameter increment rates were the highest in plants developing on logs and the lowest in tree-fall holes. There are functional and morphological distinctions in the organization of root systems in microsites of different types. In log microsites (nutrient-rich substrate, no root competition from the keystone species), root systems are able to utilize the substrate’s resources through the extensive (increase in specific length of conducting roots) as well as the intensive (increase in the average absorbing root length and surface area of ectomycorrhiza (EM) and ectendomycorrhiza (EEM)) pathways. The plants “invest” more efficiently in the growth of conducting roots – spending less organic matter to form longer conducting roots. The removal of the forest floor (top organic layer of soil) in tree-fall holes causes a reduction in nutrient content in the substrate. In this situation, root systems are modified to augment the uptake of soil resources (increase in the specific area of fine roots and surface area of EM), providing the plants with sufficient amount of nutrients to maintain a growth rate comparable to that of the plants in undisturbed-soil microsites.
Full Text

About the authors
A. V. Kireeva
Karelian Research Centre of the Russian Academy of Sciences
Author for correspondence.
Email: avkikeeva@mail.ru
Russian Federation, Petrozavodsk
E. V. Novichonok
Karelian Research Centre of the Russian Academy of Sciences
Email: avkikeeva@mail.ru
Russian Federation, Petrozavodsk
I. N. Sofronova
Karelian Research Centre of the Russian Academy of Sciences
Email: avkikeeva@mail.ru
Russian Federation, Petrozavodsk
N. V. Genikova
Karelian Research Centre of the Russian Academy of Sciences
Email: avkikeeva@mail.ru
Russian Federation, Petrozavodsk
N. V. Afoshin
Karelian Research Centre of the Russian Academy of Sciences
Email: avkikeeva@mail.ru
Russian Federation, Petrozavodsk
References
- Voronov A. G. 1973. [Geobotanika]. Moscow. 384 p. (In Russian)
- McCarthy J. 2001. Gap dynamics of forest trees: A review with particular attention to boreal forests. — Environ. Rev. 9(1): 1–59. https://doi.org/10.1139/er-9-1-1
- von Oheimb G., Friedel A., Bertsch A., Härdtle W. 2007. The effects of windthrow on plant species richness in a Central European beech forest. — Plant Ecol. 191(1): 47–65. https://doi.org/10.1007/s11258-006-9213-5
- Smirnova O. V., Alejnikov A. A., Semikolenny`x A. A., Bovkunov A. D., Zaprudina M. V., Smirnov N. S. 2013. [Typological and structural diversity of the middle taiga Ural forests]. — In: [Diversity and dynamics of the forest ecosystems]. Moscow. Vol. 2. P. 42–66. (In Russian)
- Harmon M. E., Franklin J. F., Swanson F. J., Sollins P., Gregory S. V., Lattin J. D., Anderson N. H., Cline S. P., Aumen N. G., Sedell J. R., Lienkaemper G. W., Cromack K. Jr., Cummins K. W. 1986. Ecology of coarse woody debris in temperate ecosystems. — Adv. Ecol. Res. 15: 133–302. https://doi.org/10.1016/S0065-2504(08)60121-X
- Kuuluvainen T. 2002. Natural variability of forests as a reference for restoring and managing biological diversity in boreal Fennoscandia. — Silva Fenn. 36(1): 552. https://doi.org/10.14214/sf.552
- Kuuluvainen T., Laiho R. 2004. Long-term forest utilization can decrease forest floor microhabitat diversity: evidence from boreal Fennoscandia. — Can. J. For. Res. 34(2): 303–309. https://doi.org/10.1139/x03-159
- Kupferschmid A. D., Bugmann H. 2005. Effect of microsites, logs and ungulate browsing on Picea abies regeneration in a mountain forest. — Forest Ecol. Manag. 205(1–3): 251–265. https://doi.org/10.1016/j.foreco.2004.10.008
- Kreutz A., Aakala T., Grenfell R., Kuuluvainen T. 2015. Spatial tree community structure in three stands across a forest succession gradient in northern boreal Fennoscandia. — Silva Fenn. 49(2): 1279. https://doi.org/10.14214/sf.1279
- Ulanova N. G. 2000. The effects of windthrow on forests at different spatial scales: a review. — Forest Ecol. Manag. 135(1–3): 155–167. https://doi.org/10.1016/S0378-1127(00)00307-8
- Fraver S., Milo A. M., Bradford J. B., D’Amato A. W., Kenefic L., Palik B. J., Woodall C. W., Brissette J. 2013. Woody debris volume depletion through decay: implications for biomass and carbon accounting. — Ecosyst. 16(7): 1262–1272. https://doi.org/10.1007/s10021-013-9682-z
- Bobkova K. S., Bessonov I. M. 2009. Natural regeneration in southern taiga spruce forests of the European North-East. — Rus. J. For. Sci. 5: 10–16. https://www.elibrary.ru/item.asp?id=13500448 (In Russian)
- Storozhenko V. G. 2022. Features of the horizontal structure of the forests of spruce formations in the European taiga of Russia. — Lesnoy Zhurnal (Russian Forestry Journal). 2(386): 39–49. https://doi.org/10.37482/0536-1036-2022-2-39-49 (In Russian)
- Szewczyk J., Szwagrzyk J. 1996. Tree regeneration on rotten wood and on soil in old-growth stand. — Vegetatio. 122(1): 37–46. https://doi.org/10.1007/BF00052814
- Hörnberg G., Ohlson M., Zackrisson O. 1997. Influence of bryophytes and microrelief conditions on Picea abies seed regeneration patterns in boreal old-growth swamp forests. — Can. J. For. Res. 27(7): 1015–1023. https://doi.org/10.1139/x97-045
- Kuuluvainen T., Kalmari R. 2004. Regeneration microsites of Picea abies seedlings in a windthrow area of a boreal old-growth forest in southern Finland. — Ann. Bot. Fenn. 40(6): 401–413. https://www.sekj.org/PDF/anbf40/anbf40-401.pdf
- Lilja S., Wallenius T., Kuuluvainen T. 2006. Structure and development of old Picea abies forests in northern boreal Fennoscandia. — Écoscience. 13(2): 181–192. https://doi.org/10.2980/i1195-6860-13-2-181.1
- Voronova V. S. 1959. [Natural regeneration under spruce forest canopy]. — Trudy Karelskogo filiala AN SSSR. XVI: 30–37. (In Russian)
- Kuuluvainen T. 1994. Gap disturbance, ground microtopography, and the regeneration dynamics of boreal coniferous forests in Finland: a review. — Ann. Zool. Fenn. 31(1): 35–51.
- Nilsson U., Gemmel P., Hallgren J.E. 1996. Competing vegetation effects on initial growth of planted Picea abies. New Zealand. —J. For. Sci. 26(1–2): 84–98.
- Ilisson T., Köster K., Vodde F., Jõgiste K. 2007. Regeneration development 4–5 years after a storm in Norway spruce dominated forests, Estonia. — Forest Ecology and Management. 250(1–2): 17–24. https://doi.org/10.1016/j.foreco.2007.03.022
- Holeksa J., Żywiec M., Bogdziewicz M., Kurek P., Milne-Rostkowska F., Piechnik Ł., Seget B. 2021. Microsite-specific 25-year mortality of Norway spruce saplings. — Forest Ecol. Manag. 498: 119572. https://doi.org/10.1016/j.foreco.2021.119572
- Vitousek P. M., Howarth R. W. 1991. Nitrogen limitation on land and in the sea: How can it occur? — Biogeochemistry. 13(2): 87–115. https://doi.org/10.1007/BF00002772
- Fedorecz N. G., Morozova R. M., Sin’kevich S. M., Zagural’skaya L. M. 2000. [Evaluation of the forest soils productivity in Karelia]. Petrozavodsk. 193 p. (In Russian)
- Giesler R., Petersson T., Högberg P. 2002. Phosphorus limitation in boreal forests: effects of aluminum and iron accumulation in the humus layer. — Ecosyst. 5(3): 300–314. https://doi.org/10.1007/s10021-001-0073-5
- Marschner H., Dell B. 1994. Nutrient uptake in mycorrhizal symbiosis. — Plant Soil. 159(1): 89–102. https://doi.org/10.1007/BF00000098
- Brunner I., Brodbeck S. 2001. Response of mycorrhizal Norway spruce seedlings to various nitrogen loads and sources. — Environ. Pollut. 114(2): 223–233. https://doi.org/10.1016/S0269-7491(00)00219-0
- Bogeat-Triboulot M.-B., Bartoli F., Garbaye J., Marmeisse R., Tagu D. 2004. Fungal ectomycorrhizal community and drought affect root hydraulic properties and soil adherence to roots of Pinus pinaster seedlings. — Plant Soil. 267(1–2): 213–223. https://doi.org/10.1007/s11104-005-5349-7
- Shubin V. I. 1973. [Micotrophy of woody species]. Leningrad. 264 p. (In Russian)
- Kalliokoski T., Nygren P., Sievänen R. 2008. Coarse root architecture of three boreal tree species growing in mixed stands. — Silva Fenn. 42(2): 252. https://doi.org/10.14214/sf.252
- Børja I., De Wit H. A., Steffenrem A., Majdi H. 2008. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway. — Tree Physiol. 28(5): 773–784. https://doi.org/10.1093/treephys/28.5.773
- Ellenberg H. 1988. Vegetation Ecology of Central Europe (4th ed.). Cambridge University Press. 753 p.
- Niinemets Ü., Valladares F. 2006. Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. — Ecol. Monogr. 76(4): 521–547. https://doi.org/10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2
- Adams T. S., McCormack M. L., Eissenstat D. M. 2013. Foraging strategies in trees of different root morphology: the role of root lifespan. — Tree Physiol. 33(9): 940–948. https://doi.org/10.1093/treephys/tpt067
- Helmisaari H. S., Ostonen I., Lõhmus K., Derome J., Lindroos A. J., Merilä P., Nöjd P. 2009. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. — Tree Physiol. 29(3): 445–456. https://doi.org/10.1093/treephys/tpn042
- Ostonen I., Helmisaari H., Borken W., Tedersoo L., Kukumägi M., Bahram M., Lindroos A., Nöjd P., Uri V., Merilä P., Asi E., Lõhmus K. 2011. Fine root foraging strategies in Norway spruce forests across a European climate gradient. — Glob. Change Biol. 17(12): 3620–3632. https://doi.org/10.1111/j.1365-2486.2011.02501.x
- Ostonen I., Rosenvald K., Helmisaari H.-S., Godbold D., Parts K., Uri V., Lõhmus K. 2013. Morphological plasticity of ectomycorrhizal short roots in Betula sp. and Picea abies forests across climate and forest succession gradients: its role in changing environments. — Front. Plant Sci. 4. https://doi.org/10.3389/fpls.2013.00335
- Eissenstat D. M., Kucharski J. M., Zadworny M., Adams T. S., Koide R. T. 2015. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. — New Phytol. 208(1): 114–124. https://doi.org/10.1111/nph.13451
- Baier R., Ettl R., Hahn C., Göttlein A. 2006. Early development and nutrition of Norway spruce (Picea abies (L.) Karst.) seedlings on different seedbeds in the Bavarian limestone Alps – a bioassay. — Ann. For. Sci. 63(4): 339–348. https://doi.org/10.1051/forest:2006014
- McCormack M. L., Dickie I. A., Eissenstat D. M., Fahey T. J., Fernandez C. W., Guo D., Helmisaari H., Hobbie E. A., Iversen C. M., Jackson R. B., Leppälammi-Kujansuu J., Norby R. J., Phillips R. P., Pregitzer K. S., Pritchard S. G., Rewald B., Zadworny M. 2015. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. — New Phytol. 207(3): 505–518. https://doi.org/10.1111/nph.13363
- Pregitzer K. S. 2002. Fine roots of trees – a new perspective. — New Phytol. 154(2): 267–270. https://doi.org/10.1046/j.1469-8137.2002.00413_1.x
- Ford E. D., Deans J. D. 1977. Growth of a Sitka spruce plantation: Spatial distribution and seasonal fluctuations of lengths, weights and carbohydrate concentrations of fine roots. — Plant Soil. 47(2): 463–485. https://doi.org/10.1007/BF00011504
- Clemensson-Lindell A. 1994. Triphenyltetrazolium chloride as an indicator of fine-root vitality and environmental stress in coniferous forest stands: Applications and limitations. — Plant Soil. 159(2): 297–300. https://doi.org/10.1007/BF00009293
- Lõhmus K., Oja T., Lasn R. 1989. Specific root area: A soil characteristic. — Plant Soil. 119(2): 245–249. https://doi.org/10.1007/BF02370415
- Niinemets U., Kull O. 1995. Effects of light availability and tree size on the architecture of assimilative surface in the canopy of Picea abies: variation in needle morphology. — Tree Physiol. 15(5): 307–315. https://doi.org/10.1093/treephys/15.5.307
- Johansson K., Langvall O., Bergh J. 2012. Optimization of environmental factors affecting initial growth of Norway spruce seedlings. — Silva Fenn. 46(1): 64. https://doi.org/10.14214/sf.64
- Macek M., Wild J., Kopecký M., Červenka J., Svoboda M., Zenáhlíková J., Brůna J., Mosandl R., Fischer A. 2017. Life and death of Picea abies after bark-beetle outbreak: ecological processes driving seedling recruitment. — Ecol. Appl. 27(1): 156–167. https://doi.org/10.1002/eap.1429
- Thorsen Å. A., Mattsson S., Weslien J. 2001. Influence of stem diameter on the survival and growth of containerized Norway spruce seedlings attacked by pine weevils (Hylobius spp.). — Scand. J. For. Res. 16(1): 54–66. https://doi.org/10.1080/028275801300004415
- Romashkin I., Shorohova E., Kapitsa E., Galibina N., Nikerova K. 2021. Substrate quality regulates density loss, cellulose degradation and nitrogen dynamics in downed woody debris in a boreal forest. — For. Ecol. Manag. 491: 119143. https://doi.org/10.1016/j.foreco.2021.119143
- Boddy L., Watkinson S. C. 1995. Wood decomposition, higher fungi, and their role in nutrient redistribution. — Can. J. Bot. 73(S1): 1377–1383. https://doi.org/10.1139/b95-400
- Vodde F., Jõgiste K., Gruson L., Ilisson T., Köster K., Stanturf J.A. 2010. Regeneration in windthrow areas in hemiboreal forests: the influence of microsite on the height growths of different tree species. — J. For. Res. 15(1): 55–64. https://doi.org/10.1007/s10310-009-0156-2
- Kathke S., Bruelheide H. 2010. Interaction of gap age and microsite type for the regeneration of Picea abies. — For. Ecol. Manag. 259(8): 1597–1605. https://doi.org/10.1016/j.foreco.2010.01.036
- Guo D., Xia M., Wei X., Chang W., Liu Y., Wang Z. 2008. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty‐three Chinese temperate tree species. — New Phytol. 180(3): 673–683. https://doi.org/10.1111/j.1469-8137.2008.02573.x
- Celma S., Blate K., Lazdiņa D., Dūmiņš K., Neimane S., Štāls T. A., Štikāne K. 2019. Effect of soil preparation method on root development of P. sylvestris and P. abies saplings in commercial forest stands. — New Forest. 50(2): 283–290. https://doi.org/10.1007/s11056-018-9654-4
- Novichonok E. V., Galibina N. A., Kharitonov V. A., Kikeeva A. V., Nikerova K. M., Sofronova I. N., Rumyantsev A. S. 2020. Effect of site preparation under shelterwood on Norway spruce seedlings. — Scand. J. For. Res. 35(8): 523–531. https://doi.org/10.1080/02827581.2020.1825789
- Lõhmus K., Truu M., Truu J., Ostonen I., Kaar E., Vares A., Uri V., Alama S., Kanal A. 2006. Functional diversity of culturable bacterial communities in the rhizosphere in relation to fine-root and soil parameters in alder stands on forest, abandoned agricultural, and oil-shale mining areas. — Plant Soil. 283(1–2): 1–10. https://doi.org/10.1007/s11104-005-2509-8
- Ostonen I., Püttsepp Ü., Biel C., Alberton O., Bakker M. R., Lõhmus K., Majdi H., Metcalfe D., Olsthoorn A. F. M., Pronk A., Vanguelova E., Weih M., Brunner I. 2007. Specific root length as an indicator of environmental change. — Plant Biosyst. 141(3): 426–442. https://doi.org/10.1080/11263500701626069
- Ryser P. 2006. The mysterious root length. — Plant Soil. 286(1–2): 1–6. https://doi.org/10.1007/s11104-006-9096-1
- White P. J., George T. S., Gregory P. J., Bengough A. G., Hallett P. D., McKenzie B. M. 2013. Matching roots to their environment. — Ann. Bot. 112(2): 207–222.https://doi.org/10.1093/aob/mct123
- Wen Z., White P. J., Shen J., Lambers H. 2022. Linking root exudation to belowground economic traits for resource acquisition. — New Phytol. 233(4): 1620–1635. https://doi.org/10.1111/nph.17854
- Hanssen K. H. 2003. Natural regeneration of Picea abies on small clear-cuts in SE Norway. — For. Ecol. Manag. 180(1–3): 199–213. https://doi.org/10.1016/S0378-1127(02)00610-2
- Craine J. M. 2006. Competition for nutrients and optimal root allocation. — Plant Soil. 285(1–2): 171–185. https://doi.org/10.1007/s11104-006-9002-x
- Craine J. M., Dybzinski R. 2013. Mechanisms of plant competition for nutrients, water and light. – Funct. Ecol. 27(4): 833–840. https://doi.org/10.1111/1365-2435.12081
- Madsen C., Potvin C., Hall J., Sinacore K., Turner B. L., Schnabel F. 2020. Coarse root architecture: Neighbourhood and abiotic environmental effects on five tropical tree species growing in mixtures and monocultures. — For. Ecol. Manag. 460: 117851. https://doi.org/10.1016/j.foreco.2019.117851
- Ostonen I., Lõhmus K., Lasn R. 1999. The role of soil conditions in fine root ecomorphology in Norway spruce (Picea abies (L.) Karst.). — Plant Soil. 208(2): 283–292. https://doi.org/10.1023/A:1004552907597
- Eissenstat D. M. 1991. On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks. — New Phytol. 118(1): 63–68. https://doi.org/10.1111/j.1469-8137.1991.tb00565.x
- Fitter A. 1991. Characteristics and functions of root systems. — In: Plant roots: the hidden half. New York. P. 3–24.
- Pennanen T., Heiskanen J., Korkama T. 2005. Dynamics of ectomycorrhizal fungi and growth of Norway spruce seedlings after planting on a mounded forest clearcut. — For. Ecol. Manag. 213(1–3): 243–252. https://doi.org/10.1016/j.foreco.2005.03.044
- Ingestad T. 1979. Mineral nutrient requirements of Pinus silvestris and Picea abies seedlings. — Physiol. Plant. 45(4): 373–380. https://doi.org/10.1111/j.1399-3054.1979.tb02599.x
- Cape J. N., Freer-Smith P. H., Paterson I. S., Parkinson J. A., Wolfenden J. 1990. The nutritional status of Picea abies (L.) Karst. across Europe, and implications for ?forest decline? — Trees. 4(4): 211–224. https://doi.org/10.1007/BF00225318
- Ingestad T. 1959. Studies on the nutrition of forest tree seedlings. II Mineral nutrition of spruce. — Physiol. Plant. 12(3): 568–593. https://doi.org/10.1111/j.1399-3054.1959.tb07979.x
- Comerford N. B., Fisher R. F. 1984. Using foliar analysis to classify nitrogen-deficient sites. — Soil Sci. Soc. Am. J. 48(4): 910–913. https://doi.org/10.2136/sssaj1984.03615995004800040042x
- Peng Y., Niklas K. J., Sun S. 2011. The relationship between relative growth rate and whole-plant C : N : P stoichiometry in plant seedlings grown under nutrient-enriched conditions. — J. Pl. Ecol. 4(3): 147–156. https://doi.org/10.1093/jpe/rtq026
Supplementary files
