Oncoprotective potential of sulforaphane

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is known that natural compounds are effective against many human diseases, including cancer. One of these compounds is sulforaphane. In recent years, growing number of studies have been conducted to assess its oncoprotective potential. In cancer, sulforaphane mainly regulates potential biomarkers that activate or inhibit associated signaling pathways. This compound has demonstrated promising inhibitory effects on breast, lung, liver and other malignant cancer cells. This review presents data on the activity and functional mechanisms of sulforaphane in various oncological diseases, as well as studies on the effectiveness and toxicity of this compound.

全文:

受限制的访问

作者简介

D. Dergachev

Medical Systems

Email: anna-gajdarova@yandex.ru
俄罗斯联邦, St. Petersburg

E. Lesiovskaya

Scientific and Clinical Center of Toxicology named after Academician S.N. Golikov of the Federal Medical and Biological Agency

Email: anna-gajdarova@yandex.ru
俄罗斯联邦, St. Petersburg

A. Kozlova

Novosibirsk State Pedagogical University

编辑信件的主要联系方式.
Email: anna-gajdarova@yandex.ru
俄罗斯联邦, Novosibirsk

M. Subotyalov

Novosibirsk State Pedagogical University; Novosibirsk State University

Email: anna-gajdarova@yandex.ru
俄罗斯联邦, Novosibirsk; Novosibirsk

参考

  1. World Health Organization. 2020. WHO report on cancer: setting priorities, investing wisely and providing care for all.; Available online: https://apps.who.int/iris/handle/10665/330745. (accessed on 27 August 2020)
  2. Yan Y., Xu Z., Dai S., Qian L., Sun L., Gong Z. 2016.Targeting autophagy to sensitive glioma to temozolomide treatment. – J. Exp. Clin. Cancer. Res. 35: 23. https://doi.org/10.1186/s13046-016-0303-5
  3. Wang X., Yan Y., Chen X., Zeng S., Qian L., Ren X., Wei J., Yang X., Zhou Y., Gong Z., Xu Z. 2018. The antitumor activities of Marsdeniatena cissima. – Front. Oncol. 8: 473. https://doi.org/10.3389/fonc.2018.00473
  4. Sekar P., Ravitchandirane R., Khanam S., Muniraj N., Cassinadane A. V. 2022. Novel molecules as the emerging trends in cancer treatment: an update. – Med. Oncol. 39(2): 20. https://doi.org/10.1007/s12032-021-01615-6
  5. Vanduchova A., Anzenbacher P., Anzenbacherova E. 2019. Isothiocyanate from broccoli, sulforaphane, and its properties. – J. Med. Food. 22(2): 121–126. https://doi.org/10.1089/jmf.2018.0024
  6. Otoo R.A., Allen A.R. 2023. Sulforaphane's multifaceted potential: from neuroprotection to anticancer action. – Molecules. 28(19): 6902. https://doi.org/10.3390/molecules28196902
  7. Von Schmid H., Karrer P. 1948. Synthese der racemischen und der optisch aktiven Formen des Sulforaphans. – Helv. Chim. Acta. 31(6): 1497–1505. https://doi.org/10.1002/hlca.19480310608
  8. Procházka Ž. 1959. Isolation of sulforaphane from hoary cress (Lepidium draba L.). – Collect. Czech. Chem. Commun. 24(7): 2429–2430. https://doi.org/10.1135/cccc19592429
  9. Zhang Y., Talalay P., Cho C. G., Posner G. H. 1992. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. – PNAS. 89(6): 2399–2403. https://doi.org/10.1073/pnas.89.6.2399
  10. Zuo M., Chen H., Liao Y., He P., Xu T., Tang J., Zhang N. 2023. Sulforaphane and bladder cancer: a potential novel antitumor compound. – Front Pharmacol. 14: 1254236. https://doi.org/10.3389/fphar.2023.1254236
  11. Bheemreddy R. M., Jeffery E. H. 2007. The metabolic fate of purified glucoraphanin in F344 rats. – J. Agric. Food Chem. 55(8): 2861–2866. https://doi.org/10.1021/jf0633544
  12. Mahn A., Castillo A. 2021. Potential of sulforaphane as a natural immune system enhancer: a review. – Molecules. 26(3): 752. https://doi.org/10.3390/molecules26030752
  13. Kamal M. M., Akter S., Lin C. N., Nazzal S. 2020. Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. – Arch. Pharm. Res. 43(4): 371–384. https://doi.org/10.1007/s12272-020-01225-2
  14. Alkharashi N. A. O., Periasamy V. S., Athinarayanan J., Alshatwi A. A. 2019. Sulforaphane alleviates cadmium-induced toxicity in human mesenchymal stem cells through POR and TNFSF10 genes expression. – Biomed. Pharmacother. 115: 108896. https://doi.org/10.1016/j.biopha.2019.108896
  15. Akbari E., Namazian M. 2020. Sulforaphane: A natural product against reactive oxygen species. – Comput. Theor. Chem. 1183: 112850. https://doi.org/10.1016/j.comptc.2020.112850
  16. Al-Bakheit A., Abu-Qatouseh L. 2020. Sulforaphane from broccoli attenuates inflammatory hepcidin by reducing IL-6 secretion in human HepG2 cells. – J. Funct. Foods. 75: 104210. https://doi.org/10.1016/j.jff.2020.104210
  17. Çakır I., Lining Pan P., Hadley C. K., El-Gamal A., Fadel A., Elsayegh D., Mohamed O., Rizk N. M., Ghamari-Langroudi M. 2022. Sulforaphane reduces obesity by reversing leptin resistance. – eLife. 11: e67368. https://doi.org/10.7554/eLife.67368
  18. Zhang Y., Wu Q., Liu J., Zhang Z., Ma X., Zhang Y., Zhu J., Thring R.W., Wu M., Gao Y., Tong H. 2022. Sulforaphane alleviates high fat diet-induced insulin resistance via AMPK/Nrf2/GPx4 axis. – Biomed. Pharmacother. 152: 113273. https://doi.org/10.1016/j.biopha.2022.113273
  19. Bose C., Alves I., Singh P., Palade P. T., Carvalho E., Børsheim E., Jun S.R., Cheema A., Boerma M., Awasthi S., Singh S.P. 2020.Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. – Aging Cell. 19(11): e13261. https://doi.org/10.1111/acel.13261
  20. Zhang Y., Tang L., Gonzalez V. 2003. Selected isothiocyanates rapidly induce growth inhibition of cancer cells. – Mol. Cancer. Ther. 2(10): 1045–1052. https://aacrjournals.org/mct/article-pdf/2/10/1045/1865044/1045-1052.pdf
  21. Vaiopoulos A. G., Athanasoula K. Ch., Papavassiliou A. G. 2014. Epigenetic modifications in colorectal cancer: Molecular insights and therapeutic challenges. – Biochim. Biophys. Acta. 1842(7): 971–980. https://doi.org/10.1016/j.bbadis.2014.02.006
  22. Cadoná F. C., Rosa J. L., Schneider T., Cubillos-Rojas M., Sánchez-Tena S., Azzolin V. F., Assmann C. E., Machado A. K., Ribeiro E. E., da Cruz I. B. M. 2017. Guarana, a highly caffeinated food, presents in vitro antitumor activity in colorectal and breast cancer cell lines by inhibiting AKT/mTOR/S6K and MAPKs pathways. – Nutr. Cancer. 69(5): 800–810. https://doi.org/10.1080/01635581.2017.1324994
  23. Habib J. G., O’Shaughnessy J. A. 2016. The hedgehog pathway in triple-negative breast cancer. – Cancer Med. 5(10): 2989–3006. https://doi.org/10.1002/cam4.833
  24. Benvenuto M., Masuelli L., De Smaele E., Fantini M., Mattera R., Cucchi D., Bonanno E., Di Stefano E., Frajese G. V., Orlandi A., Screpanti I., Gulino A., Modesti A., Bei R. 2016. In vitro and in vivo inhibition of breast cancer cell growth by targeting the Hedgehog/GLI pathway with SMO (GDC-0449) or GLI (GANT-61) inhibitors. – Oncotarget. 7(8): 9250–9270. https://doi.org/10.18632/oncotarget.7062
  25. Yang M., Teng W., Qu Y., Wang H., Yuan Q. 2016. Sulforaphane inhibits triple negative breast cancer through activating tumor suppressor Egr1. – Breast. Cancer. Res. Treat. 158(2): 277–286. https://doi.org/10.1007/s10549-016-3888-7
  26. Tahmasebi Birgani M., Carloni V. 2017. Tumor microenvironment, a paradigm in hepatocellular carcinoma progression and therapy. — Int. J. Mol. Sci. 18(2): 405. https://doi.org/10.3390/ijms18020405
  27. Okon I. S., Zou M. H. 2015. Mitochondrial ROS and cancer drug resistance: Implications for therapy. – Pharmacol. Res. 100: 170–174. https://doi.org/10.1016/j.phrs.2015.06.013
  28. De Marco C., Laudanna C., Rinaldo N., Oliveira D. M., Ravo M., Weisz A., Ceccarelli M., Caira E., Rizzuto A., Zoppoli P., Malanga D., Viglietto G. 2017. Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer. – PLoS One. 12(6): e0178865. https://doi.org/10.1371/journal.pone.0178865
  29. Zhao Z. Q., Yu Z. Y., Li J., Ouyang X. N. 2016. Gefitinib induces lung cancer cell autophagy and apoptosis via blockade of the PI3K/AKT/mTOR pathway. – Oncol. Lett. 12(1):63–68. https://doi.org/10.3892/ol.2016.4606
  30. Tsikouras P., Zervoudis S., Manav B., Tomara E., Iatrakis G., Romanidis C., Bothou A., Galazios G. 2016. Cervical cancer: Screening, diagnosis and staging. – J. BUON. 21(2): 320–325. PMID: 27273940. https://jbuon.com/archive/21-2-320.pdf
  31. Biswas R., Mondal A., Chatterjee S., Ahn J. C. 2016. Evaluation of synergistic effects of sulforaphane with photodynamic therapy in human cervical cancer cell line. – Lasers Med. Sci. 31(8): 1675–1682. https://doi.org/10.1007/s10103-016-2037-1
  32. Choi B. Y., Joo J. C., Lee Y. K., Jang I. S., Park S. J., Park Y. J. 2017. Anti-cancer effect of Scutellaria baicalensis in combination with cisplatin in human ovarian cancer cell. – BMC Complement Altern. Med. 17: 277. https://doi.org/10.1186/s12906-017-1776-2
  33. Samuel P., Pink R. C., Brooks S. A., Carter D. R. 2016. miRNAs and ovarian cancer: a miRiad of mechanisms to induce cisplatin drug resistance. – Expert Rev. Anticancer. Ther. 16(1): 57–70. https://doi.org/10.1586/14737140.2016.1121107
  34. Biswas R., Ahn J. C., Kim J. S. 2015. Sulforaphane synergistically sensitizes cisplatin via enhanced mitochondrial dysfunction and PI3K/PTEN modulation in ovarian cancer cells. –Anticancer Res. 35(7): 3901–3908. PMID: 26124336. https://ar.iiarjournals.org/content/35/7/3901
  35. Mondal A., Biswas R., Rhee Y. H., Kim J., Ahn J. C. 2016. Sulforaphane promotes Bax/Bcl2, MAPK-dependent human gastric cancer AGS cells apoptosis and inhibits migration via EGFR, p-ERK1/2 down-regulation. – Gen. Physiol. Biophys. 35(1): 25–34. https://doi.org/10.4149/gpb_2015033
  36. Byun S., Shin S. H., Park J., Lim S., Lee E., Lee C., Sung D., Farrand L., Lee S. R., Kim K. H., Dong Z, Lee S. W., Lee K. W. 2016. Sulforaphane suppresses growth of colon cancer-derived tumors via induction of glutathione depletion and microtubule depolymerization. – Mol. Nutr. Food Res. 60(5): 1068–1078. https://doi.org/10.1002/mnfr.201501011
  37. Mordecai J., Ullah S., Ahmad I. 2023. Sulforaphane and its protective role in prostate cancer: a mechanistic approach. – Int. J. Mol. Sci. 24(8): 6979. https://doi.org/10.3390/ijms24086979
  38. Kuran D., Pogorzelska A., Wiktorska K. 2020. Breast cancer prevention - Is there a future for sulforaphane and its analogs? – Nutrients. 12(6): 1559. https://doi.org/10.3390/nu12061559
  39. Mokhtari R. B., Qorri B., Baluch N., Sparaneo A., Fabrizio F. P., Muscarella L. A., Tyker A., Kumar S., Cheng H. L. M., Szewczuk M. R., Das B., Yeger H. 2021. Next-generation multimodality of nutrigenomic cancer therapy: sulforaphane in combination with acetazolamide actively target bronchial carcinoid cancer in disabling the PI3K/Akt/MTOR survival pathway and inducing apoptosis. – Oncotarget. 12: 1470–1489. https://doi.org/10.18632/oncotarget.28011
  40. Castro N. P., Rangel M. C., Merchant A. S., MacKinnon G., Cuttitta F., Salomon D. S., Kim Y. S. 2019. Sulforaphane suppresses the growth of triple-negative breast cancer stem-like cells in vitro and in vivo. – Cancer Prev. Res. 12(3): 147–158. https://doi.org/10.1158/1940-6207.CAPR-18-0241
  41. Royston K. J., Paul B., Nozell S., Rajbhandari R., Tollefsbol T. O. 2018. Withaferin A and Sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. – Exp. Cell Res. 368(1): 67–74. https://doi.org/10.1016/j.yexcr.2018.04.015
  42. Pore S. K., Hahm E.-R., Kim S.-H., Singh K. B., Nyiranshuti L., Latoche J. D., Anderson C. J., Adamik J., Galson D. L., Weiss K. R., Watters R. J., Boeun Lee B., Kumta P. N., Singh S. V. 2020. A novel sulforaphane-regulated gene network in suppression of breast cancer–induced osteolytic bone resorption. – Mol. Cancer Ther. 19(2): 420–431. https://doi.org/10.1158/1535-7163.MCT-19-0611
  43. Hu R., Xu C., Shen G., Jain M. R., Khor T. O., Gopalkrishnan A., Lin W., Bandaru Reddy B., Chan J. Y., Tony Kong A. N. T. 2006. Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6J mice and C57BL/6J/Nrf2 (-/-) mice. – Cancer Lett. 243(2): 170–192. https://doi.org/10.1016/j.canlet.2005.11.050
  44. Yan L., Yan Y. 2023. Therapeutic potential of sulforaphane in liver diseases: a review. – Front Pharmacol. 14: 1256029.https://doi.org/10.3389/fphar.2023.1256029
  45. Park S. Y., Kim G. Y., Bae S. J., Yoo Y. H., Choi Y. H. 2007. Induction of apoptosis by isothiocyanate sulforaphane in human cervical carcinoma HeLa and hepatocarcinoma HepG2 cells through activation of caspase-3. – Oncol. Rep. 18(1): 181–187. https://doi.org/10.3892/or.18.1.181
  46. Jeon Y. K., Yoo D. R., Jang Y. H., Jang S. Y., Nam M. J. 2011. Sulforaphane induces apoptosis in human hepatic cancer cells through inhibition of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase4, mediated by hypoxia inducible factor-1-dependent pathway. – Biochim. Biophys. Acta. 1814(10): 1340–1348. https://doi.org/10.1016/j.bbapap.2011.05.015
  47. Liu P., Atkinson S. J., Akbareian S. E., Zhou Z., Munsterberg A., Robinson S. D., Bao Y. 2017. Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1α/VEGF signaling. – Sci. Rep. 7: 12651. https://doi.org/10.1038/s41598-017-12855-w
  48. Wu J., Han J., Hou B., Deng C., Wu H., Shen L. 2016. Sulforaphane inhibits TGF-β-induced epithelial-mesenchymal transition of hepatocellular carcinoma cells via the reactive oxygen species-dependent pathway. – Oncol. Rep. 35(5): 2977–2983. https://doi.org/10.3892/or.2016.4638
  49. Moon D. O., Kang S. H., Kim K. C., Kim M. O., Choi Y. H., Kim G. Y. 2010. Sulforaphane decreases viability and telomerase activity in hepatocellular carcinoma Hep3B cells through the reactive oxygen species-dependent pathway. – Cancer Lett. 295(2): 260–266. https://doi.org/10.1016/j.canlet.2010.03.009
  50. Liu P., Wang W., Zhou Z., Smith A. J. O., Bowater R. P., Wormstone I. M., Chen Y., Bao Y. 2018. Chemopreventive activities of sulforaphane and its metabolites in human hepatoma HepG2 cells. – Nutrients. 10(5): 585. https://doi.org/10.3390/nu10050585
  51. Yagishita Y., Fahey J. W., Dinkova-Kostova A. T., Kensler T. W. 2019. Broccoli or sulforaphane: is it the source or dose that matters? – Molecules. 24(19): 3593. https://doi.org/10.3390/molecules24193593
  52. Xie C., Zhu J., Jiang Y., Chen J., Wang X., Geng S., Wu J., Zhong C., Li X., Meng Z. 2019. Sulforaphane inhibits the acquisition of tobacco smoke-induced lung cancer stem cell-like properties via the IL-6/ΔNp63α/Notch axis. – Theranostics. 9(16): 4827–4840. https://doi.org/10.7150/thno.33812
  53. Geng Y., Zhou Y., Wu S., Hu Y., Lin K., Wang Y., Zheng Z., Wu W. 2017. Sulforaphane induced apoptosis via promotion of mitochondrial fusion and ERK1/2-mediated 26S proteasome degradation of novel pro-survival Bim and upregulation of Bax in human non-small cell lung cancer cells. – J. Cancer. 8: 2456–2470. https://doi.org/10.7150/jca.19383
  54. Wang T. H., Chen C. C., Huang K. Y., Shih Y. M., Chen C. Y. 2019. High levels of EGFR prevent sulforaphane-induced reactive oxygen species-mediated apoptosis in non-small-cell lung cancer cells. — Phytomedicine. 64: 152926. https://doi.org/10.1016/j.phymed.2019.152926
  55. Gao L., Cheng D., Yang J., Wu R., Li W., Kong A. N. 2018. Sulforaphane epigenetically demethylates the CpG sites of the miR-9-3 promoter and reactivates miR-9-3 expression in human lung cancer A549 cells. – J. Nutr. Biochem. 56: 109–115. https://doi.org/10.1016/j.jnutbio.2018.01.015
  56. Mastuo T., Miyata Y., Yuno T., Mukae Y., Otsubo A., Mitsunari K., Ohba K., Sakai H. 2020. Molecular mechanisms of the anti-cancer effects of isothiocyanates from cruciferous vegetables in bladder cancer. – Molecules. 25(3): 575. https://doi.org/10.3390/molecules25030575
  57. Xia Y., Kang T. W., Jung Y. D., Zhang C., Lian S. 2019. Sulforaphane inhibits nonmuscle invasive bladder cancer cells proliferation through suppression of HIF-1α-mediated glycolysis in hypoxia. – J. Agric. Food Chem. 67(28): 7844–7854. https://doi.org/10.1021/acs.jafc.9b03027
  58. Abbaoui B., Riedl K. M., Ralston R. A., Thomas-Ahner J. M., Schwartz S. J., Clinton S. K., Mortazavi A. 2012. Inhibition of bladder cancer by broccoli isothiocyanates sulforaphane and erucin: Characterization, metabolism, and interconversion. – Mol. Nutr. Food Res. 56(11): 1675–1687. https://doi.org/10.1002/mnfr.201200276
  59. Abbaoui B., Telu K. H., Lucas C. R., Thomas-Ahner J. M., Schwartz S. J., Clinton S. K., Freitas M. A., Mortazavi A. 2017. The impact of cruciferous vegetable isothiocyanates on histone acetylation and histone phosphorylation in bladder cancer. – J. Proteom. 156: 94–103. https://doi.org/10.1016/j.jprot.2017.01.013
  60. Wang F., Shan Y. 2012. Sulforaphane retards the growth of UM-UC-3 xenographs, induces apoptosis, and reduces survivin in athymic mice. – Nutr. Res. 32(5): 374–380. https://doi.org/10.1016/j.nutres.2012.03.014
  61. Michaud D. S., Spiegelman D., Clinton S. K., Rimm E. B., Willett W. C., Giovannucci E. L. 1999. Fruit and vegetable intake and incidence of bladder cancer in a male prospective cohort. – J. Natl. Cancer Inst. 91(7): 605–613. https://doi.org/10.1093/jnci/91.7.605
  62. Tang L., Zirpoli G. R., Guru K., Moysich K. B., Zhang Y., Ambrosone C. B., McCann S. E. 2010. Intake of cruciferous vegetables modifies bladder cancer survival. – Cancer Epidemiol. Biomark. Prev. 19(7): 1806–1811. https://doi.org/10.1158/1055-9965.EPI-10-0008
  63. Al-Zalabani A. H., Stewart K. F., Wesselius A., Schols A. M., Zeegers M. P. 2016. Modifiable risk factors for the prevention of bladder cancer: a systematic review of meta-analyses. –Eur. J. Epidemiol. 31(9): 811–851. https://doi.org/10.1007/s10654-016-0138-6
  64. Cheng Y. M., Tsai C. C., Hsu Y. C. 2016. Sulforaphane, a dietary isothiocyanate, induces G(2)/M arrest in cervical cancer cells through CyclinB1 downregulation and GADD45β/CDC2 association. – Int. J. Mol. Sci. 17(9): 1530. https://doi.org/10.3390/ijms17091530
  65. Ali Khan M., KedhariSundaram M., Hamza A., Quraishi U., Gunasekera D., Ramesh L., Goala P., Al Alami U., Ansari M. Z., Rizvi T. A., et al. 2015. Sulforaphane reverses the expression of various tumor suppressor genes by targeting DNMT3B and HDAC1 in human cervical cancer cells. – Evidence-Based Complement. Altern. Med. 2015: 412149. https://doi.org/10.1155/2015/412149
  66. Sharma C., Sadrieh L., Priyani A., Ahmed M., Hassan A. H., Hussain A. J. C. E. 2011. Anti-carcinogenic effects of sulforaphane in association with its apoptosis-inducing and anti-inflammatory properties in human cervical cancer cells. – Cancer Epidemiol. 35: 272–278. https://doi.org/10.1016/j.canep.2010.09.008
  67. Zhang Z., Garzotto M., Davis E. W., 2nd, Mori M., Stoller W. A., Farris P. E., Wong C. P., Beaver L. M., Thomas G. V., Williams D. E., et al. 2020. Sulforaphane bioavailability and chemopreventive activity in men presenting for biopsy of the prostate gland: a randomized controlled trial. — Nutr. Cancer. 72: 74–87. https://doi.org/10.1080/01635581.2019.1619783
  68. Traka M. H., Melchini A., Coode-Bate J., Al Kadhi O., Saha S., Defernez M., Troncoso-Rey P., Kibblewhite H., O’Neill C. M., Bernuzzi F., et al. 2019. Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention-results from the effect of sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial. – Am. J. Clin. Nutr. 109: 1133–1144. https://doi.org/10.1093/ajcn/nqz012
  69. Livingstone T. L., Saha S., Bernuzzi F., Savva G. M., Troncoso-Rey P., Traka M. H., Mills R. D., Ball R. Y., Mithen R. F. 2022. Accumulation of sulforaphane and alliin in human prostate tissue. – Nutrients. 14: 3263. https://doi.org/10.3390/nu14163263
  70. Wang H., Wang F., Wu S., Liu Z., Li T., Mao L., Zhang J., Li C., Liu C., Yang Y. 2018. Traditional herbal medicine-derived sulforaphane promotes mitophagic cell death in lymphoma cells through CRM1-mediated p62/SQSTM1 accumulation and AMPK activation. – Chem. Biol. Interact. 281: 11–23.
  71. Biswas R., Mondal A., Chatterjee S., Ahn J.C. 2016. Evaluation of synergistic effects of sulforaphane with photodynamic therapy in human cervical cancer cell line. – Lasers Med. Sci. 31(8): 1675–1682.
  72. Fahey J. W., Wade K. L., Stephenson K. K., Panjwani A. A., Liu H., Cornblatt G., Cornblatt B. S., Ownby S. L., Fuchs E., Holtzclaw W.D ., Cheskin L. J. 2019. Bioavailability of sulforaphane following ingestion of glucoraphanin-rich broccoli sprout and seed extracts with active myrosinase: A pilot study of the effects of proton pump inhibitor administration. – Nutrients. 11(7): 1489.
  73. Baenas N., Suarez-Martinez C., Garcia-Viguera C., Moreno D. A. 2017. Bioavailability and new biomarkers of cruciferous sprouts consumption. – Food Res. Int. 100(Pt 1): 497–503.
  74. Soni K., Rizwanullah M., Kohli K. 2018. Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: In vitro, ex vivo and in vivo assessments. – Artif. Cells Nanomed. Biotechnol. 46(Supp1): 15–31.
  75. Yang M., Wang H., Zhou M., Liu W., Kuang P., Liang H., Yuan Q. 2016. The natural compound sulforaphane, as a novel anticancer reagent, targeting PI3K-AKT signaling pathway in lung cancer. – Oncotarget. 7(47): 76656–76666.
  76. Socata K., Nieoczym D., Kowalczuk-Vasilev E., Wyska E., Wlaz P. 2017. Increased seizure susceptibility and other toxicity symptoms following acute sulforaphane treatment in mice. – Toxicol. Appl. Pharmacol. 326: 43–53. https://doi.org/10.1016/j.taap.2017.04.010
  77. Kaiser A. E., Baniasadi M., Giansiracusa D., Giansiracusa M., Garcia M., Fryda Z., Wong T. L., Bishayee A. 2021. Sulforaphane: a broccoli bioactive phytocompound with cancer preventive potential. – Cancers. 13: 4796. https://doi.org/10.3390/cancers13194796
  78. Singh K. B., Hahm E. R., Alumkal J. J., Foley L. M., Hitchens T. K., Shiva S. S., Parikh R. A., Jacobs B. L., Singh S. V. 2019. Reversal of the Warburg phenomenon in chemoprevention of prostate cancer by sulforaphane. – Carcinogenesis. 40: 1545–1556. https://doi.org/10.1093/carcin/bgz155

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024