Oncoprotective potential of sulforaphane
- 作者: Dergachev D.S.1, Lesiovskaya E.E.2, Kozlova A.P.3, Subotyalov M.A.3,4
-
隶属关系:
- Medical Systems
- Scientific and Clinical Center of Toxicology named after Academician S.N. Golikov of the Federal Medical and Biological Agency
- Novosibirsk State Pedagogical University
- Novosibirsk State University
- 期: 卷 60, 编号 3 (2024)
- 页面: 122-134
- 栏目: Biological Activity of Plants
- URL: https://gynecology.orscience.ru/0033-9946/article/view/674406
- DOI: https://doi.org/10.31857/S0033994624030099
- EDN: https://elibrary.ru/PTOIYM
- ID: 674406
如何引用文章
详细
It is known that natural compounds are effective against many human diseases, including cancer. One of these compounds is sulforaphane. In recent years, growing number of studies have been conducted to assess its oncoprotective potential. In cancer, sulforaphane mainly regulates potential biomarkers that activate or inhibit associated signaling pathways. This compound has demonstrated promising inhibitory effects on breast, lung, liver and other malignant cancer cells. This review presents data on the activity and functional mechanisms of sulforaphane in various oncological diseases, as well as studies on the effectiveness and toxicity of this compound.
全文:

作者简介
D. Dergachev
Medical Systems
Email: anna-gajdarova@yandex.ru
俄罗斯联邦, St. Petersburg
E. Lesiovskaya
Scientific and Clinical Center of Toxicology named after Academician S.N. Golikov of the Federal Medical and Biological Agency
Email: anna-gajdarova@yandex.ru
俄罗斯联邦, St. Petersburg
A. Kozlova
Novosibirsk State Pedagogical University
编辑信件的主要联系方式.
Email: anna-gajdarova@yandex.ru
俄罗斯联邦, Novosibirsk
M. Subotyalov
Novosibirsk State Pedagogical University; Novosibirsk State University
Email: anna-gajdarova@yandex.ru
俄罗斯联邦, Novosibirsk; Novosibirsk
参考
- World Health Organization. 2020. WHO report on cancer: setting priorities, investing wisely and providing care for all.; Available online: https://apps.who.int/iris/handle/10665/330745. (accessed on 27 August 2020)
- Yan Y., Xu Z., Dai S., Qian L., Sun L., Gong Z. 2016.Targeting autophagy to sensitive glioma to temozolomide treatment. – J. Exp. Clin. Cancer. Res. 35: 23. https://doi.org/10.1186/s13046-016-0303-5
- Wang X., Yan Y., Chen X., Zeng S., Qian L., Ren X., Wei J., Yang X., Zhou Y., Gong Z., Xu Z. 2018. The antitumor activities of Marsdeniatena cissima. – Front. Oncol. 8: 473. https://doi.org/10.3389/fonc.2018.00473
- Sekar P., Ravitchandirane R., Khanam S., Muniraj N., Cassinadane A. V. 2022. Novel molecules as the emerging trends in cancer treatment: an update. – Med. Oncol. 39(2): 20. https://doi.org/10.1007/s12032-021-01615-6
- Vanduchova A., Anzenbacher P., Anzenbacherova E. 2019. Isothiocyanate from broccoli, sulforaphane, and its properties. – J. Med. Food. 22(2): 121–126. https://doi.org/10.1089/jmf.2018.0024
- Otoo R.A., Allen A.R. 2023. Sulforaphane's multifaceted potential: from neuroprotection to anticancer action. – Molecules. 28(19): 6902. https://doi.org/10.3390/molecules28196902
- Von Schmid H., Karrer P. 1948. Synthese der racemischen und der optisch aktiven Formen des Sulforaphans. – Helv. Chim. Acta. 31(6): 1497–1505. https://doi.org/10.1002/hlca.19480310608
- Procházka Ž. 1959. Isolation of sulforaphane from hoary cress (Lepidium draba L.). – Collect. Czech. Chem. Commun. 24(7): 2429–2430. https://doi.org/10.1135/cccc19592429
- Zhang Y., Talalay P., Cho C. G., Posner G. H. 1992. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. – PNAS. 89(6): 2399–2403. https://doi.org/10.1073/pnas.89.6.2399
- Zuo M., Chen H., Liao Y., He P., Xu T., Tang J., Zhang N. 2023. Sulforaphane and bladder cancer: a potential novel antitumor compound. – Front Pharmacol. 14: 1254236. https://doi.org/10.3389/fphar.2023.1254236
- Bheemreddy R. M., Jeffery E. H. 2007. The metabolic fate of purified glucoraphanin in F344 rats. – J. Agric. Food Chem. 55(8): 2861–2866. https://doi.org/10.1021/jf0633544
- Mahn A., Castillo A. 2021. Potential of sulforaphane as a natural immune system enhancer: a review. – Molecules. 26(3): 752. https://doi.org/10.3390/molecules26030752
- Kamal M. M., Akter S., Lin C. N., Nazzal S. 2020. Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. – Arch. Pharm. Res. 43(4): 371–384. https://doi.org/10.1007/s12272-020-01225-2
- Alkharashi N. A. O., Periasamy V. S., Athinarayanan J., Alshatwi A. A. 2019. Sulforaphane alleviates cadmium-induced toxicity in human mesenchymal stem cells through POR and TNFSF10 genes expression. – Biomed. Pharmacother. 115: 108896. https://doi.org/10.1016/j.biopha.2019.108896
- Akbari E., Namazian M. 2020. Sulforaphane: A natural product against reactive oxygen species. – Comput. Theor. Chem. 1183: 112850. https://doi.org/10.1016/j.comptc.2020.112850
- Al-Bakheit A., Abu-Qatouseh L. 2020. Sulforaphane from broccoli attenuates inflammatory hepcidin by reducing IL-6 secretion in human HepG2 cells. – J. Funct. Foods. 75: 104210. https://doi.org/10.1016/j.jff.2020.104210
- Çakır I., Lining Pan P., Hadley C. K., El-Gamal A., Fadel A., Elsayegh D., Mohamed O., Rizk N. M., Ghamari-Langroudi M. 2022. Sulforaphane reduces obesity by reversing leptin resistance. – eLife. 11: e67368. https://doi.org/10.7554/eLife.67368
- Zhang Y., Wu Q., Liu J., Zhang Z., Ma X., Zhang Y., Zhu J., Thring R.W., Wu M., Gao Y., Tong H. 2022. Sulforaphane alleviates high fat diet-induced insulin resistance via AMPK/Nrf2/GPx4 axis. – Biomed. Pharmacother. 152: 113273. https://doi.org/10.1016/j.biopha.2022.113273
- Bose C., Alves I., Singh P., Palade P. T., Carvalho E., Børsheim E., Jun S.R., Cheema A., Boerma M., Awasthi S., Singh S.P. 2020.Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. – Aging Cell. 19(11): e13261. https://doi.org/10.1111/acel.13261
- Zhang Y., Tang L., Gonzalez V. 2003. Selected isothiocyanates rapidly induce growth inhibition of cancer cells. – Mol. Cancer. Ther. 2(10): 1045–1052. https://aacrjournals.org/mct/article-pdf/2/10/1045/1865044/1045-1052.pdf
- Vaiopoulos A. G., Athanasoula K. Ch., Papavassiliou A. G. 2014. Epigenetic modifications in colorectal cancer: Molecular insights and therapeutic challenges. – Biochim. Biophys. Acta. 1842(7): 971–980. https://doi.org/10.1016/j.bbadis.2014.02.006
- Cadoná F. C., Rosa J. L., Schneider T., Cubillos-Rojas M., Sánchez-Tena S., Azzolin V. F., Assmann C. E., Machado A. K., Ribeiro E. E., da Cruz I. B. M. 2017. Guarana, a highly caffeinated food, presents in vitro antitumor activity in colorectal and breast cancer cell lines by inhibiting AKT/mTOR/S6K and MAPKs pathways. – Nutr. Cancer. 69(5): 800–810. https://doi.org/10.1080/01635581.2017.1324994
- Habib J. G., O’Shaughnessy J. A. 2016. The hedgehog pathway in triple-negative breast cancer. – Cancer Med. 5(10): 2989–3006. https://doi.org/10.1002/cam4.833
- Benvenuto M., Masuelli L., De Smaele E., Fantini M., Mattera R., Cucchi D., Bonanno E., Di Stefano E., Frajese G. V., Orlandi A., Screpanti I., Gulino A., Modesti A., Bei R. 2016. In vitro and in vivo inhibition of breast cancer cell growth by targeting the Hedgehog/GLI pathway with SMO (GDC-0449) or GLI (GANT-61) inhibitors. – Oncotarget. 7(8): 9250–9270. https://doi.org/10.18632/oncotarget.7062
- Yang M., Teng W., Qu Y., Wang H., Yuan Q. 2016. Sulforaphane inhibits triple negative breast cancer through activating tumor suppressor Egr1. – Breast. Cancer. Res. Treat. 158(2): 277–286. https://doi.org/10.1007/s10549-016-3888-7
- Tahmasebi Birgani M., Carloni V. 2017. Tumor microenvironment, a paradigm in hepatocellular carcinoma progression and therapy. — Int. J. Mol. Sci. 18(2): 405. https://doi.org/10.3390/ijms18020405
- Okon I. S., Zou M. H. 2015. Mitochondrial ROS and cancer drug resistance: Implications for therapy. – Pharmacol. Res. 100: 170–174. https://doi.org/10.1016/j.phrs.2015.06.013
- De Marco C., Laudanna C., Rinaldo N., Oliveira D. M., Ravo M., Weisz A., Ceccarelli M., Caira E., Rizzuto A., Zoppoli P., Malanga D., Viglietto G. 2017. Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer. – PLoS One. 12(6): e0178865. https://doi.org/10.1371/journal.pone.0178865
- Zhao Z. Q., Yu Z. Y., Li J., Ouyang X. N. 2016. Gefitinib induces lung cancer cell autophagy and apoptosis via blockade of the PI3K/AKT/mTOR pathway. – Oncol. Lett. 12(1):63–68. https://doi.org/10.3892/ol.2016.4606
- Tsikouras P., Zervoudis S., Manav B., Tomara E., Iatrakis G., Romanidis C., Bothou A., Galazios G. 2016. Cervical cancer: Screening, diagnosis and staging. – J. BUON. 21(2): 320–325. PMID: 27273940. https://jbuon.com/archive/21-2-320.pdf
- Biswas R., Mondal A., Chatterjee S., Ahn J. C. 2016. Evaluation of synergistic effects of sulforaphane with photodynamic therapy in human cervical cancer cell line. – Lasers Med. Sci. 31(8): 1675–1682. https://doi.org/10.1007/s10103-016-2037-1
- Choi B. Y., Joo J. C., Lee Y. K., Jang I. S., Park S. J., Park Y. J. 2017. Anti-cancer effect of Scutellaria baicalensis in combination with cisplatin in human ovarian cancer cell. – BMC Complement Altern. Med. 17: 277. https://doi.org/10.1186/s12906-017-1776-2
- Samuel P., Pink R. C., Brooks S. A., Carter D. R. 2016. miRNAs and ovarian cancer: a miRiad of mechanisms to induce cisplatin drug resistance. – Expert Rev. Anticancer. Ther. 16(1): 57–70. https://doi.org/10.1586/14737140.2016.1121107
- Biswas R., Ahn J. C., Kim J. S. 2015. Sulforaphane synergistically sensitizes cisplatin via enhanced mitochondrial dysfunction and PI3K/PTEN modulation in ovarian cancer cells. –Anticancer Res. 35(7): 3901–3908. PMID: 26124336. https://ar.iiarjournals.org/content/35/7/3901
- Mondal A., Biswas R., Rhee Y. H., Kim J., Ahn J. C. 2016. Sulforaphane promotes Bax/Bcl2, MAPK-dependent human gastric cancer AGS cells apoptosis and inhibits migration via EGFR, p-ERK1/2 down-regulation. – Gen. Physiol. Biophys. 35(1): 25–34. https://doi.org/10.4149/gpb_2015033
- Byun S., Shin S. H., Park J., Lim S., Lee E., Lee C., Sung D., Farrand L., Lee S. R., Kim K. H., Dong Z, Lee S. W., Lee K. W. 2016. Sulforaphane suppresses growth of colon cancer-derived tumors via induction of glutathione depletion and microtubule depolymerization. – Mol. Nutr. Food Res. 60(5): 1068–1078. https://doi.org/10.1002/mnfr.201501011
- Mordecai J., Ullah S., Ahmad I. 2023. Sulforaphane and its protective role in prostate cancer: a mechanistic approach. – Int. J. Mol. Sci. 24(8): 6979. https://doi.org/10.3390/ijms24086979
- Kuran D., Pogorzelska A., Wiktorska K. 2020. Breast cancer prevention - Is there a future for sulforaphane and its analogs? – Nutrients. 12(6): 1559. https://doi.org/10.3390/nu12061559
- Mokhtari R. B., Qorri B., Baluch N., Sparaneo A., Fabrizio F. P., Muscarella L. A., Tyker A., Kumar S., Cheng H. L. M., Szewczuk M. R., Das B., Yeger H. 2021. Next-generation multimodality of nutrigenomic cancer therapy: sulforaphane in combination with acetazolamide actively target bronchial carcinoid cancer in disabling the PI3K/Akt/MTOR survival pathway and inducing apoptosis. – Oncotarget. 12: 1470–1489. https://doi.org/10.18632/oncotarget.28011
- Castro N. P., Rangel M. C., Merchant A. S., MacKinnon G., Cuttitta F., Salomon D. S., Kim Y. S. 2019. Sulforaphane suppresses the growth of triple-negative breast cancer stem-like cells in vitro and in vivo. – Cancer Prev. Res. 12(3): 147–158. https://doi.org/10.1158/1940-6207.CAPR-18-0241
- Royston K. J., Paul B., Nozell S., Rajbhandari R., Tollefsbol T. O. 2018. Withaferin A and Sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. – Exp. Cell Res. 368(1): 67–74. https://doi.org/10.1016/j.yexcr.2018.04.015
- Pore S. K., Hahm E.-R., Kim S.-H., Singh K. B., Nyiranshuti L., Latoche J. D., Anderson C. J., Adamik J., Galson D. L., Weiss K. R., Watters R. J., Boeun Lee B., Kumta P. N., Singh S. V. 2020. A novel sulforaphane-regulated gene network in suppression of breast cancer–induced osteolytic bone resorption. – Mol. Cancer Ther. 19(2): 420–431. https://doi.org/10.1158/1535-7163.MCT-19-0611
- Hu R., Xu C., Shen G., Jain M. R., Khor T. O., Gopalkrishnan A., Lin W., Bandaru Reddy B., Chan J. Y., Tony Kong A. N. T. 2006. Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6J mice and C57BL/6J/Nrf2 (-/-) mice. – Cancer Lett. 243(2): 170–192. https://doi.org/10.1016/j.canlet.2005.11.050
- Yan L., Yan Y. 2023. Therapeutic potential of sulforaphane in liver diseases: a review. – Front Pharmacol. 14: 1256029.https://doi.org/10.3389/fphar.2023.1256029
- Park S. Y., Kim G. Y., Bae S. J., Yoo Y. H., Choi Y. H. 2007. Induction of apoptosis by isothiocyanate sulforaphane in human cervical carcinoma HeLa and hepatocarcinoma HepG2 cells through activation of caspase-3. – Oncol. Rep. 18(1): 181–187. https://doi.org/10.3892/or.18.1.181
- Jeon Y. K., Yoo D. R., Jang Y. H., Jang S. Y., Nam M. J. 2011. Sulforaphane induces apoptosis in human hepatic cancer cells through inhibition of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase4, mediated by hypoxia inducible factor-1-dependent pathway. – Biochim. Biophys. Acta. 1814(10): 1340–1348. https://doi.org/10.1016/j.bbapap.2011.05.015
- Liu P., Atkinson S. J., Akbareian S. E., Zhou Z., Munsterberg A., Robinson S. D., Bao Y. 2017. Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1α/VEGF signaling. – Sci. Rep. 7: 12651. https://doi.org/10.1038/s41598-017-12855-w
- Wu J., Han J., Hou B., Deng C., Wu H., Shen L. 2016. Sulforaphane inhibits TGF-β-induced epithelial-mesenchymal transition of hepatocellular carcinoma cells via the reactive oxygen species-dependent pathway. – Oncol. Rep. 35(5): 2977–2983. https://doi.org/10.3892/or.2016.4638
- Moon D. O., Kang S. H., Kim K. C., Kim M. O., Choi Y. H., Kim G. Y. 2010. Sulforaphane decreases viability and telomerase activity in hepatocellular carcinoma Hep3B cells through the reactive oxygen species-dependent pathway. – Cancer Lett. 295(2): 260–266. https://doi.org/10.1016/j.canlet.2010.03.009
- Liu P., Wang W., Zhou Z., Smith A. J. O., Bowater R. P., Wormstone I. M., Chen Y., Bao Y. 2018. Chemopreventive activities of sulforaphane and its metabolites in human hepatoma HepG2 cells. – Nutrients. 10(5): 585. https://doi.org/10.3390/nu10050585
- Yagishita Y., Fahey J. W., Dinkova-Kostova A. T., Kensler T. W. 2019. Broccoli or sulforaphane: is it the source or dose that matters? – Molecules. 24(19): 3593. https://doi.org/10.3390/molecules24193593
- Xie C., Zhu J., Jiang Y., Chen J., Wang X., Geng S., Wu J., Zhong C., Li X., Meng Z. 2019. Sulforaphane inhibits the acquisition of tobacco smoke-induced lung cancer stem cell-like properties via the IL-6/ΔNp63α/Notch axis. – Theranostics. 9(16): 4827–4840. https://doi.org/10.7150/thno.33812
- Geng Y., Zhou Y., Wu S., Hu Y., Lin K., Wang Y., Zheng Z., Wu W. 2017. Sulforaphane induced apoptosis via promotion of mitochondrial fusion and ERK1/2-mediated 26S proteasome degradation of novel pro-survival Bim and upregulation of Bax in human non-small cell lung cancer cells. – J. Cancer. 8: 2456–2470. https://doi.org/10.7150/jca.19383
- Wang T. H., Chen C. C., Huang K. Y., Shih Y. M., Chen C. Y. 2019. High levels of EGFR prevent sulforaphane-induced reactive oxygen species-mediated apoptosis in non-small-cell lung cancer cells. — Phytomedicine. 64: 152926. https://doi.org/10.1016/j.phymed.2019.152926
- Gao L., Cheng D., Yang J., Wu R., Li W., Kong A. N. 2018. Sulforaphane epigenetically demethylates the CpG sites of the miR-9-3 promoter and reactivates miR-9-3 expression in human lung cancer A549 cells. – J. Nutr. Biochem. 56: 109–115. https://doi.org/10.1016/j.jnutbio.2018.01.015
- Mastuo T., Miyata Y., Yuno T., Mukae Y., Otsubo A., Mitsunari K., Ohba K., Sakai H. 2020. Molecular mechanisms of the anti-cancer effects of isothiocyanates from cruciferous vegetables in bladder cancer. – Molecules. 25(3): 575. https://doi.org/10.3390/molecules25030575
- Xia Y., Kang T. W., Jung Y. D., Zhang C., Lian S. 2019. Sulforaphane inhibits nonmuscle invasive bladder cancer cells proliferation through suppression of HIF-1α-mediated glycolysis in hypoxia. – J. Agric. Food Chem. 67(28): 7844–7854. https://doi.org/10.1021/acs.jafc.9b03027
- Abbaoui B., Riedl K. M., Ralston R. A., Thomas-Ahner J. M., Schwartz S. J., Clinton S. K., Mortazavi A. 2012. Inhibition of bladder cancer by broccoli isothiocyanates sulforaphane and erucin: Characterization, metabolism, and interconversion. – Mol. Nutr. Food Res. 56(11): 1675–1687. https://doi.org/10.1002/mnfr.201200276
- Abbaoui B., Telu K. H., Lucas C. R., Thomas-Ahner J. M., Schwartz S. J., Clinton S. K., Freitas M. A., Mortazavi A. 2017. The impact of cruciferous vegetable isothiocyanates on histone acetylation and histone phosphorylation in bladder cancer. – J. Proteom. 156: 94–103. https://doi.org/10.1016/j.jprot.2017.01.013
- Wang F., Shan Y. 2012. Sulforaphane retards the growth of UM-UC-3 xenographs, induces apoptosis, and reduces survivin in athymic mice. – Nutr. Res. 32(5): 374–380. https://doi.org/10.1016/j.nutres.2012.03.014
- Michaud D. S., Spiegelman D., Clinton S. K., Rimm E. B., Willett W. C., Giovannucci E. L. 1999. Fruit and vegetable intake and incidence of bladder cancer in a male prospective cohort. – J. Natl. Cancer Inst. 91(7): 605–613. https://doi.org/10.1093/jnci/91.7.605
- Tang L., Zirpoli G. R., Guru K., Moysich K. B., Zhang Y., Ambrosone C. B., McCann S. E. 2010. Intake of cruciferous vegetables modifies bladder cancer survival. – Cancer Epidemiol. Biomark. Prev. 19(7): 1806–1811. https://doi.org/10.1158/1055-9965.EPI-10-0008
- Al-Zalabani A. H., Stewart K. F., Wesselius A., Schols A. M., Zeegers M. P. 2016. Modifiable risk factors for the prevention of bladder cancer: a systematic review of meta-analyses. –Eur. J. Epidemiol. 31(9): 811–851. https://doi.org/10.1007/s10654-016-0138-6
- Cheng Y. M., Tsai C. C., Hsu Y. C. 2016. Sulforaphane, a dietary isothiocyanate, induces G(2)/M arrest in cervical cancer cells through CyclinB1 downregulation and GADD45β/CDC2 association. – Int. J. Mol. Sci. 17(9): 1530. https://doi.org/10.3390/ijms17091530
- Ali Khan M., KedhariSundaram M., Hamza A., Quraishi U., Gunasekera D., Ramesh L., Goala P., Al Alami U., Ansari M. Z., Rizvi T. A., et al. 2015. Sulforaphane reverses the expression of various tumor suppressor genes by targeting DNMT3B and HDAC1 in human cervical cancer cells. – Evidence-Based Complement. Altern. Med. 2015: 412149. https://doi.org/10.1155/2015/412149
- Sharma C., Sadrieh L., Priyani A., Ahmed M., Hassan A. H., Hussain A. J. C. E. 2011. Anti-carcinogenic effects of sulforaphane in association with its apoptosis-inducing and anti-inflammatory properties in human cervical cancer cells. – Cancer Epidemiol. 35: 272–278. https://doi.org/10.1016/j.canep.2010.09.008
- Zhang Z., Garzotto M., Davis E. W., 2nd, Mori M., Stoller W. A., Farris P. E., Wong C. P., Beaver L. M., Thomas G. V., Williams D. E., et al. 2020. Sulforaphane bioavailability and chemopreventive activity in men presenting for biopsy of the prostate gland: a randomized controlled trial. — Nutr. Cancer. 72: 74–87. https://doi.org/10.1080/01635581.2019.1619783
- Traka M. H., Melchini A., Coode-Bate J., Al Kadhi O., Saha S., Defernez M., Troncoso-Rey P., Kibblewhite H., O’Neill C. M., Bernuzzi F., et al. 2019. Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention-results from the effect of sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial. – Am. J. Clin. Nutr. 109: 1133–1144. https://doi.org/10.1093/ajcn/nqz012
- Livingstone T. L., Saha S., Bernuzzi F., Savva G. M., Troncoso-Rey P., Traka M. H., Mills R. D., Ball R. Y., Mithen R. F. 2022. Accumulation of sulforaphane and alliin in human prostate tissue. – Nutrients. 14: 3263. https://doi.org/10.3390/nu14163263
- Wang H., Wang F., Wu S., Liu Z., Li T., Mao L., Zhang J., Li C., Liu C., Yang Y. 2018. Traditional herbal medicine-derived sulforaphane promotes mitophagic cell death in lymphoma cells through CRM1-mediated p62/SQSTM1 accumulation and AMPK activation. – Chem. Biol. Interact. 281: 11–23.
- Biswas R., Mondal A., Chatterjee S., Ahn J.C. 2016. Evaluation of synergistic effects of sulforaphane with photodynamic therapy in human cervical cancer cell line. – Lasers Med. Sci. 31(8): 1675–1682.
- Fahey J. W., Wade K. L., Stephenson K. K., Panjwani A. A., Liu H., Cornblatt G., Cornblatt B. S., Ownby S. L., Fuchs E., Holtzclaw W.D ., Cheskin L. J. 2019. Bioavailability of sulforaphane following ingestion of glucoraphanin-rich broccoli sprout and seed extracts with active myrosinase: A pilot study of the effects of proton pump inhibitor administration. – Nutrients. 11(7): 1489.
- Baenas N., Suarez-Martinez C., Garcia-Viguera C., Moreno D. A. 2017. Bioavailability and new biomarkers of cruciferous sprouts consumption. – Food Res. Int. 100(Pt 1): 497–503.
- Soni K., Rizwanullah M., Kohli K. 2018. Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: In vitro, ex vivo and in vivo assessments. – Artif. Cells Nanomed. Biotechnol. 46(Supp1): 15–31.
- Yang M., Wang H., Zhou M., Liu W., Kuang P., Liang H., Yuan Q. 2016. The natural compound sulforaphane, as a novel anticancer reagent, targeting PI3K-AKT signaling pathway in lung cancer. – Oncotarget. 7(47): 76656–76666.
- Socata K., Nieoczym D., Kowalczuk-Vasilev E., Wyska E., Wlaz P. 2017. Increased seizure susceptibility and other toxicity symptoms following acute sulforaphane treatment in mice. – Toxicol. Appl. Pharmacol. 326: 43–53. https://doi.org/10.1016/j.taap.2017.04.010
- Kaiser A. E., Baniasadi M., Giansiracusa D., Giansiracusa M., Garcia M., Fryda Z., Wong T. L., Bishayee A. 2021. Sulforaphane: a broccoli bioactive phytocompound with cancer preventive potential. – Cancers. 13: 4796. https://doi.org/10.3390/cancers13194796
- Singh K. B., Hahm E. R., Alumkal J. J., Foley L. M., Hitchens T. K., Shiva S. S., Parikh R. A., Jacobs B. L., Singh S. V. 2019. Reversal of the Warburg phenomenon in chemoprevention of prostate cancer by sulforaphane. – Carcinogenesis. 40: 1545–1556. https://doi.org/10.1093/carcin/bgz155
补充文件
