О влиянии распределения удельной скорости диссипации на эффективность массопереноса в аппаратах с жидкофазными средами
- Авторлар: Абиев Р.Ш.1
-
Мекемелер:
- Санкт-Петербургский государственный технологический институт (технический университет)
- Шығарылым: Том 58, № 6 (2024)
- Беттер: 791-810
- Бөлім: Articles
- ##submission.datePublished##: 15.12.2024
- URL: https://gynecology.orscience.ru/0040-3571/article/view/681298
- DOI: https://doi.org/10.31857/S0040357124060126
- EDN: https://elibrary.ru/VHACLF
- ID: 681298
Дәйексөз келтіру
Аннотация
Выполнен теоретический анализ влияния распределения локальной удельной скорости диссипации энергии на удельную поверхность контакта фаз, поверхностный и объемный коэффициенты массоотдачи в аппаратах с гетерофазными процессами и жидкой сплошной фазой, а также на качество смешения в аппаратах с гомофазными реакциями в жидкой фазе. Показано, что среднее по объему аппарата значение удельной скорости диссипации энергии не является полноценным критерием для оценки полезного эффекта, поскольку не учитывает, с одной стороны, локальный уровень диссипации энергии в активных зонах, с другой стороны, особенности структуры потоков и локальное время пребывания в активных зонах, в зависимости от геометрии аппарата и способа ввода в него энергии. Обсуждаются предельные случаи: неравномерное распределение энергии при наличии небольшой зоны объема с высокой скоростью диссипации; идеально равномерное распределение энергии по всему объему аппарата. В первом случае существенная часть объема используется неэффективно, во втором случае затрачивается чрезмерное количество энергии. В связи с этим рассматриваются концепции дозированного распределенного ввода энергии для длительных процессов и максимальной концентрации энергии в микрообъеме для быстропротекающих процессов.
Толық мәтін

Авторлар туралы
Р. Абиев
Санкт-Петербургский государственный технологический институт (технический университет)
Хат алмасуға жауапты Автор.
Email: abiev.rufat@gmail.com
Ресей, Санкт-Петербург
Әдебиет тізімі
- Teychené S., Rodríguez-Ruiz I., Ramamoorthy R.K. Reactive crystallization: From mixing to control of kinetics by additives// Current Opinion in Colloid & Interface Science. 2020. V. 46. P. 1. https://doi.org/10.1016/j.cocis.2020.01.003;
- Bałdyga J. Mixing and fluid dynamics effects in particle precipitation processes. KONA Powder Part J 2016, 33:127.
- Villermaux J. Micromixing phenomena in stirred reactors. Encyclopedia of fluid mechanics. Houston: Gulf Publishing Company. 1986
- Patil S., Kate P.R., Deshpande J.B., Kulkarni A.A. Quantitative understanding of nucleation and growth kinetics of silver nanowires// Chem. Eng. J. 2021. V. 414. I. 128711. https://doi.org/10.1016/j.cej.2021.128711
- Tanimu A., Jaenicke S., Alhooshani K. Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications// Chem. Eng. J. 2017. V. 327. P. 792. https://doi.org/10.1016/j.cej.2017.06.161
- Vacassy R., Lemaître J., Hofmann H., Gerlings J.H. Calcium carbonate precipitation using new segmented flow tubular reactor// AIChE J. 2000. V. 46. P. 1241.
- Zhao C.-X., He L., Qiao S.Z., Middelberg A.P.J. Nanoparticle synthesis in microreactors // Chem. Eng. Sci. 2011. Vol. 66. P. 1463. https://doi.org/10.1016/j.ces.2010.08.039
- Nightingale A.M., deMello J.C. Segmented Flow Reactors for Nanocrystal Synthesis // Advanced Materials. 2013. V. 25. № 13. P. 1813. http://dx.doi.org/10.1002/adma.201203252
- Abiev R.S., Kudryashova Y.S., Zdravkov A.V., Fedorenko N.Y. Micromixing and Co-Precipitation in Continuous Microreactors with Swirled Flows and Microreactors with Impinging Swirled Flows // Inorganics. 2023. V. 11. Paper 49. https://doi.org/10.3390/inorganics11020049
- Paseta L., Seoane B., Julve D. et al. Accelerating the Controlled Synthesis of Metal–Organic Frameworks by a Microfluidic Approach: A Nanoliter Continuous Reactor. ACS Applied Materials & Interfaces. 2013. V. 5 (19). P. 9405.
- Mu Z., Zhu Y., Li B. et al. Covalent Organic Frameworks with Record Pore Apertures // Journal of the American Chemical Society. 2022. V. 144 (11). P. 5145.
- Stock N., Biswas S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews. 2012. V. 112 (2). P. 933.
- Klapötke Th.M., Sabaté C.M., Stierstorfer J. Neutral 5-nitrotetrazoles: easy initiation with low pollution // New J. Chem. 2009. V. 33. P. 136. https://doi.org/10.1039/b812529e
- Abiev R.Sh., Makusheva I.V. Effect of Macro- and Micromixing on Processes Involved in Solution Synthesis of Oxide Particles in High-Swirl Microreactors // Theor. Found. Chem. Eng. 2022. V. 56. P. 141. https://doi.org/10.1134/S0040579522020014
- Abiev R.Sh., Makusheva I.V., Mironova A.I. Comparison of hydrodynamics and micromixing quality in a two-stage microreactor with intensely swirled flows and in a T-mixer // Chem. Eng. & Proc.: Proc. Intens. 2024. CEP 109829 https://doi.org/10.1016/j.cep.2024.109829
- Ottino J.M., Ranz W.E., Macosko C.W. A lamellar model for analysis of liquid-liquid mixing// Chem. Eng. Sci. 1979. V. 34. Р. 877.
- Bałdyga J., Rozen A., Mostert F. A model of laminar micromixing with application to parallel chemical reactions// Chem. Eng. J. 1998. V. 69. Р. 7.
- Falk L., Commenge J.-M. Performance comparison of micromixers // Chem. Eng. Sci. 2010. V. 65. P. 405. https://doi.org/10.1016/j.ces.2009.05.045
- Fournier M.-C., Falk L., Villermaux J. A new parallel competing reaction system for assessing micromixing efficiency – Determination of micromixing time by a simple mixing model // Chem. Eng. Sci. 1996. V. 51. № 23. P. 5187. https://doi.org/10.1016/S0009-2509(96)00340-5
- Commenge J.-M., Falk L. Villermaux–Dushman protocol for experimental characterization of micromixers // Chem. Eng. and Proc.: Proc. Intens. 2011. V. 50. № 10. P. 979. https://doi.org/10.1016/j.cep.2011.06.006.
- Jasińska M. Test reactions to study efficiency of mixing // Chem. Process Eng. 2015. № 36 (2). Р. 171.
- Guichardon P., Falk L. Characterisation of micromixing efficiency by the iodide–iodate reaction system. Part I: experimental procedure// Chem. Eng. Sci. 2000. V. 55. P. 4233. doi: 10.1016/S0009-2509(00)00068-3
- Abiev R. Sh., Sirotkin A.A. Influence of Hydrodynamic Conditions on Micromixing in Microreactors with Free Impinging Jets// Fluids. 2020. V. 5. Iss. 4. Р. 179 doi: 10.3390/fluids5040179;
- Abiev R. Sh., Nikolaev A.M., Kovalenko A.S., Gorshkova Yu.E, Tsvigun N.V., Baranchikov A.E., Kopitsa G.P., Shilova O.A. One step synthesis of FeOx magnetic nanoparticles in the microreactor with intensively swirling flows// Chem. Eng. Res. and Des. 2024. V. 205 P. 335. https://doi.org/10.1016/j.cherd.2024.03.031
- Abiev R.S., Kudryashova A.K. Study of micromixing in a microreactor with countering intensively swirled flows. Theor. Found. Chem. Eng. 2024. 59 (2). [Абиев Р.Ш., Кудряшова А.К. Исследование микросмешения в микрореакторе с встречными интенсивно закрученными потоками// Теор. осн. хим. технол. 2024. Т. 59. № 2. С. 141].
- Соколов В.Н., Доманский И.В. Газожидкостные реакторы. Л.: Машиностроение, 1976.
- Barabash V.M., Abiev R.S., Kulov N.N. Theory and Practice of Mixing: A Review. Theor. Found. Chem. Eng. 2018. V. 52 № 4. Р. 473. https://doi.org/10.1134/S004057951804036X [Барабаш В.М., Абиев Р.Ш., Кулов Н.Н. Обзор работ по теории и практике перемешивания// Теор. основы хим. технол., 2018. Т. 52. № 4. С. 367. doi: 10.1134/S0040357118040024]
- Alopaeus V., Koskinen J., Keskinen K.I. Simulation of the Population Balances for Liquid-Liquid Systems in a Nonideal Stirred Tank, Part 1. Description and Qualitative Validation of the Model// Chem. Eng. Sci. 1999. № 54. Р. 5887.
- Albadi Y., Abiev R.S., Sirotkin A.A., Martinson K.D., Chebanenko M.I., Nevedomskyi V.N., Buryanenko I.V., Semenov V.G., Popkov V.I. Physicochemical and hydrodynamic aspects of GdFeO3 production using a free impinging-jets methods// Chem. Eng. and Proc.- Proc. Intens. 2021. №166. Р. 108473. https://doi.org/10.1016/j.cep.2021.108473
- Левеншпиль О. Инженерное оформление химических процессов М.: Химия, 1969. [Levenspiel O. Chemical Reaction Engineering, Third Edition. Wiley. 1999]
- Виестур У.Э., Кузнецов А.М., Савенков В.В. Системы ферментации. Рига: Зинатне, 1986. [Viesturs U.E., Kuznetsov A.M., Savenkov V.V. Fermentation Systems, Riga: Zinatne Press, 1986.].
- Александров И.А. Массопередача при ректификации и абсорбции многокомпонентных смесей. Л.: Химия, 1975 . [Aleksandrov I.A. Mass transfer at distillation and absorption of multicomponent mixtures. Leninigrad, Khimia. 1975. ].
- Heyouni A., Roustan M., Do-Quang Z. Hydrodynamics and mass transfer in gas–liquid flow through static mixers // Chem. Eng. Sci. 2002. № 57. Р. 3325.
- Abiev R.Sh., Galushko A.S. Hydrodynamics of pulsating flow type apparatus: simulation and experiments// Chem. Eng. J. 2013. V. 229. P. 285. doi: 10.1016/j.cej.2013.05.105
- Abiev R.Sh., Galushko A.S. Bubbles size and mass transfer in a pulsating flow type apparatus with gas-liquid mixture// Journal of Flow Chemistry. 2021. № 11. Р. 369. https://doi.org/10.1007/s41981-021-00177-y
- Vasilev M.P., Abiev R.Sh. Intensification of Droplet Disintegration for Liquid–Liquid Systems in a Pulsating Flow Type Apparatus by Adding an Inert Gas // Fluids. 2023. № 8. Р. 38. https://doi.org/10.3390/fluids8020038.
- Laakkonen M., Moilanen P., Alopaeus V., Aittamaa J. Modelling local bubble size distributions in agitated vessels // Chem. Eng. Sci. 2007. № 62. Р. 721. doi: 10.1016/j.ces.2006.10.006m
- Alves S.S., Maia C.I., Vasconcelos J.M.T., Serralheiro A.J. Bubble size in aerated stirred tanks// Chem. Eng. J. 2002. № 89. Р. 109.
Қосымша файлдар
