Flow structure at floating of a single bubble in a liquid with solute surfactant
- Authors: Borzenko E.I.1, Usanina A.S.1
-
Affiliations:
- National Research Tomsk State University
- Issue: Vol 59, No 2 (2025)
- Pages: 79-89
- Section: Articles
- Published: 04.09.2025
- URL: https://gynecology.orscience.ru/0040-3571/article/view/689812
- DOI: https://doi.org/10.31857/S0040357125020073
- EDN: https://elibrary.ru/ndgnzb
- ID: 689812
Cite item
Abstract
The results of mathematical modeling of the nonstationary problem of gas bubble surfacing in a viscous liquid with a solute dissolved in it are presented. The problem formulation is written taking into account the adsorption and desorption effects of the surfactant at the interface and the dependence of the surface tension coefficient on concentration according to Langmuir’s law. The numerical algorithm of the solution is based on the original Lagrangian-Eulerian technique, which allows us to explicitly allocate the free surface at the discrete level and realize natural boundary conditions on it. The process of establishing the stationary velocity of bubble surfacing is studied, and parametric research on the influence of the surfactant concentration and bubble size on the stationary velocity and flow structure in its vicinity is performed. The distributions of the velocity vector and surface concentration along the interface are presented, demonstrating the influence of the Marangoni effect on the surfacing process.
Full Text

About the authors
E. I. Borzenko
National Research Tomsk State University
Author for correspondence.
Email: borzenko@ftf.tsu.ru
Russian Federation, Tomsk
A. S. Usanina
National Research Tomsk State University
Email: borzenko@ftf.tsu.ru
Russian Federation, Tomsk
References
- Левич В.Г. Физико-химическая гидродинамика. М.: ГИФМЛ, 1959.
- Clift R., Grace J.R., Weber W.E. Bubbles, Drops, and Particles. New York: Academic Press, 1978.
- Farsoiya P.K., Popinet S., Stone H.A., Deike L. Coupled volume of fluid and phase field method for direct numerical simulation of insoluble surfactant-laden interfacial flows and application to rising bubbles // Phys. Rev. Fluids. 2024. № 9. Р. 094004.
- Fdhila R.B., Duineveld P.C. The effect of surfactant on the rise of a spherical bubble at high Reynolds and Peclet numbers // Phys. Fluids. 1996. V. 8. P. 310.
- Palaparthi R., Papageorgiou D.T., Maldarelli C. Theory and experiments on the stagnant cap regime in the motion of spherical surfactant-laden bubbles // J. Fluid. Mech. 2006. V. 559. P. 1.
- Kentheswaran K., Dietrich N., Tanguy S., Lalanne B. Direct numerical simulation of gas-liquid mass transfer around a spherical contaminated bubble in the stagnant-cap regime. 2022. V.198. Р. 123325.
- Takemura F. Adsorption of surfactants onto the surface of a spherical rising bubble and its effect on the terminal velocity of the bubble // Phys. Fluids. 2005. V. 17. 048104.
- Rubio A., Vega E.J., Cabezas M.G., Montanero J.M., Lopez-Herrera J.M., Herrada M.A. Bubble rising in the presence of a surfactant at very low concentrations // Phys. Fluids. 2024. V. 36. Р. 062112.
- Pang M., Jia M., Fei Y. Experimental study on effect of surfactant and solution property on bubble rising motion // J. Mol. Liq. 2023. V. 375. Р. 121390.
- Zhang B., Wang Z., Luo Y., Guo K., Zheng L. A mathematical model for single bubble motion with mass transfer and surfactant adsorption/desorption in stagnant solutions // Separation and Purification Technology. 2023. V. 308. Р. 122888.
- Sokovnin O.M., Zagoskina N.V., Zagoskin S.N. Hydrodynamics of motion of spherical particles, drops, and bubbles in non-newtonian liquid: experimental studies // Theor. Found. Chem. Eng. 2013. V. 47. № 4. Р. 356. [Соковнин О.М., Загоскина Н.В., Загоскин С.Н. Гидродинамика движения сферических частиц, капель и пузырей в неньютоновской жидкости. Экспериментальные исследования // Теорет. основы хим. технологии. 2013. Т. 47. № 4. С. 422.]
- Scriven L.E. Dynamics of a fluid interface Equation of motion for Newtonian surface fluids// Chem. Eng. Sci. 1960. V. 12 № 2. P. 98.
- Stone H.A. A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface // Phys. Fluids A: Fluid Dynamics. 1992. V. 2. P. 111.
- Manikantan H., Squires T.M. Surfactant dynamics: hidden variables controlling fluid flows // J. Fluid Mech. 2020. V. 892. P. 1.
- Borzenko E.I., Usanina A.S., Shrager G.R. Experimental and theoretical investigation of the effect of dissolved surfactant on the dynamics of gas bubble floating-up // Fluid Dynamics. 2024. Vol. 59. № 4. Р. 741. [Борзенко Е.И., Усанина А.С., Шрагер Г.Р. Экспериментально-теоретическое исследование влияние растворенного поверхностно-активного вещества на динамику всплытия газового пузырька // Изв. РАН. МЖГ. 2024. № 4. С. 108.]
- Hayashi K., Motoki Y., van der Linden M.J.A., Deen N.G., Hosokawa S., Tomiyama A. Single Contaminated Drops Falling through Stagnant Liquid at Low Reynolds Numbers // Fluids. 2022. V. 7. № 55. P. 1.
- Cuenot B., Magnaudet J., Spennato B. The effects of slightly soluble surfactants on the flow around a spherical bubble // J. Fluid Mech. 1997. V. 339. P. 25.
Supplementary files
