Самовосстанавливающиеся покрытия, содержащие слоистые двойные гидроксиды, импрегнированные ингибитором коррозии, для антикоррозионной защиты магниевых сплавов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом плазменного электролитического оксидирования на поверхности магниевого сплава МА8 сформирована пористая керамикоподобная матрица. Проведена функционализация поверхности гетерооксидного слоя путем формирования пленки из слоистых двойных гидроксидов. Предложено несколько методов интеркаляции образованных наноконтейнеров ингибитором коррозии (бензотриазолом). Изучены состав, морфология, коррозионное поведение и механизм самозалечивания сформированного покрытия.

Полный текст

Доступ закрыт

Об авторах

А. С. Гнеденков

ФГБУН Институт химии Дальневосточного отделения Российской академии наук

Автор, ответственный за переписку.
Email: asg17@mail.com
Россия, Владивосток

С. Л. Синебрюхов

ФГБУН Институт химии Дальневосточного отделения Российской академии наук

Email: asg17@mail.com
Россия, Владивосток

А. Д. Номеровский

ФГБУН Институт химии Дальневосточного отделения Российской академии наук

Email: asg17@mail.com
Россия, Владивосток

С. В. Гнеденков

ФГБУН Институт химии Дальневосточного отделения Российской академии наук

Email: asg17@mail.com
Россия, Владивосток

Список литературы

  1. Chen Q., Lu X., Serdechnova M., Wang C., Lamaka S., Blawert C., Zheludkevich M.L., Wang F. Formation of self-healing PEO coatings on AM50 Mg by in-situ incorporation of zeolite micro-container // Corros. Sci. 2022. V. 209. P. 110785.
  2. Li J., He N., Li J., Fu Q., Feng M., Jin W., Li W., Xiao Y., Yu Z., Chu P. A silicate-loaded MgAl LDH self-healing coating on biomedical Mg alloys for corrosion retardation and cytocompatibility enhancement // Surf. Coat. Tech. 2022. V. 439. P. 128442.
  3. Shulha T., Serdechnova M., Lamaka S. V., Lu X., Feiler C., Blawert C., Zheludkevich M.L. Corrosion Inhibitors Intercalated into Layered Double Hydroxides Prepared In Situ on AZ91 Magnesium Alloys: Structure and Protection Ability // ACS Appl. Mater. Interfaces. 2023. V. 15. № 4. P. 6098.
  4. Sun M., Yerokhin A., Bychkova M.Y., Shtansky D.V., Levashov E.A., Matthews A. Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy // Corros. Sci. 2016. V. 111. P. 753.
  5. Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Ustinov A.Y., Gnedenkov S.V. Hybrid Coatings for Active Protection against Corrosion of Mg and Its Alloys // Polymers. 2023. V. 15. № 14. P. 3035.
  6. Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Ustinov A.Y., Sukhoverkhov S.V., Gnedenkov S.V. New Polycaprolactone-Containing Self-Healing Coating Design for Enhance Corrosion Resistance of the Magnesium and Its Alloys // Polymers. 2023. V. 15. № 1. P. 202.
  7. Evans D.G., Slade R.C.T. Structural Aspects of Layered Double Hydroxides // Layered Double Hydroxides. Structure and Bonding. B: Springer, 2005.
  8. Xu Z., Wu Y., Zhang Z., Wang Y., Hu J., Ma Y., Zhang Z., Huang H., Wei J., Yu Q., Shi C. A review on the research progress of LDHs as corrosion inhibitors for reinforced concrete // J. Build. Eng. 2023. V. 70. P. 106303.
  9. Kasneryk V., Serdechnova M., Blawert C., Zheludkevich M.L. LDH has been grown: What is next? Overview on methods of post-treatment of LDH conversion coatings // Appl. Clay Sci. 2023. V. 232. P. 106774.
  10. Pan S.-Q., Zhang F., Wen C., Zeng R.-C. Advances in Mg–Al-layered double hydroxide steam coatings on Mg alloys: A review // J. Magnes. Alloy. 2023. V. 11. № 5. P. 1505.
  11. Pillado B., Mingo B., del Olmo R., Matykina E., Kooijman A.M., Gonzalez–Garcia Y., Arrabal R., Mohedano M. LDH conversion films for active protection of AZ31 Mg alloy // J. Magnes. Alloy. 2023. V. 11. № 1. P. 201.
  12. Li J., Luo M., Chen Z., Zhuang E., Yu B., Chen Y., Nong Y. Anti-corrosion mechanism of MgAl-LDHs inhibitors with varying anionic charge on reinforcing steel in simulated concrete pore solutions // Constr. Build. Mater. 2023. V. 363. P. 129882.
  13. Wang D., Zhu Q., Su Y., Li J., Wang A., Xing Z. Preparation of MgAlFe-LDHs as a deicer corrosion inhibitor to reduce corrosion of chloride ions in deicing salts // Constr. Build. Mater. 2019. V. 174. P. 164.
  14. Kameshima Y., Yoshizaki H., Nakajima A., Okada K. Preparation of sodium oleate/layered double hydroxide composites with acid-resistant properties // J. Colloid. Interface Sci. 2006. V. 298. № 2. P. 624.
  15. Shulha T., Serdechnova M., Iuzviuk M.H., Zobkalo I.A., Karlova P., Scharnagl N., Wieland D.C.F., Lamaka S.V., Yaremchenko A.A., Blawert C. Zheludkevich M. In situ formation of LDH-based nanocontainers on the surface of AZ91 magnesium alloy and detailed investigation of their crystal structure // J. Magnes. Alloy. 2022. V. 10. № 5. P. 1268.
  16. Гнеденков С.В., Синебрюхов С.Л., Хрисанфова О.А., Егоркин В.С., Машталяр Д.В., Сидорова М.В., Гнеденков А.С., Волкова Е.Ф. Свойства покрытий, сформированных на магниевом сплаве МА8 методом плазменного электролитического оксидирования // Вестник ДВО РАН. Т. 5. № 153. С. 35.
  17. Гнеденков, С.В. Хрисанфова, О.А. Синебрюхов С.Л., Пузь А.В., Гнеденков А.С. Композиционные защитные покрытия на поверхности никелида титана // Коррозия: материалы, защита. 2007. Т. 2. С. 20–25.
  18. Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Gnedenkov S.V. Hydroxyapatite-containing PEO-coating design for biodegradable Mg-0.8Ca alloy: Formation and corrosion behaviour //J. Magnes. Alloy. 2023. V. 11. № 12. P. 4468.
  19. Li C.-Y., Gao L., Fan X.-L., Zeng R.-C., Chen D.-C., Zhi K.-Q. In vitro degradation and cytocompatibility of a low temperature in-situ grown self-healing Mg-Al LDH coating on MAO-coated magnesium alloy AZ31 // Bioact. Mater. 2020. V. 5. № 2. P. 364.
  20. Williams G.R., Khan A.I., O’Hare D. Mechanistic and Kinetic Studies of Guest Ion Intercalation into Layered Double Hydroxides Using Time-resolved, In-situ X-ray Powder Diffraction // Layered Double Hydroxides. Structure and Bonding. B: Springer, 2005.
  21. Gnedenkov A.S., Sinebryukhov S.L., Nomerovskii A.D., Filonina V.S., Ustinov A.Y., Gnedenkov S.V. Design of self-healing PEO-based protective layers containing in-situ grown LDH loaded with inhibitor on the MA8 magnesium alloy // J. Magnes. Alloy. 2023. V. 11. № 10. P. 3688.
  22. Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D.V., Vyaliy I.E., Egorkin V.S., Gnedenkov S.V. Corrosion of the welded aluminium alloy in 0.5 M NaCl solution. Part 2: Coating protection // Materials. 2018. V. 11. № 11. P. 2177.
  23. Gnedenkov A.S., Sinebryukhov S.L., Nomerovskii A.D., Marchenko V.S., Ustinov A.Y., Gnedenkov S.V. Carboxylates as green corrosion inhibitors of magnesium alloy for biomedical application // J. Magnes. Alloy. 2024. V. 12. № 7. P. 2909.
  24. Wieduwilt F., Lenth C., Ctistis G., Plachetka U., Möller M., Wackerbarth H. Evaluation of an on-site surface enhanced Raman scattering sensor for benzotriazole // Sci. Rep. 2020. V. 10. № 1. P. 8260.
  25. Chan H.Y.H., Weaver M.J. Vibrational structural analysis of benzotriazole adsorption and phase film formation on copper using surface-enhanced Raman spectroscopy // Langmuir. 1999. V. 15. № 9. P. 3348.
  26. Thomas S., Venkateswaran S., Kapoor S., D’Cunha R., Mukherjee T. Surface enhanced Raman scattering of benzotriazole: A molecular orientational study // Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2004. V. 60. № 1–2. P. 25.
  27. Rodriguez J., Mouanga M., Roobroeck A., Cossement D., Mirisola A., Olivier M.-G. Study of the inhibition ability of benzotriazole on the Zn-Mg coated steel corrosion in chloride electrolyte // Corros. Sci. 2018. V. 132. P. 56.
  28. Wang J.-L., Ke C., Pohl K., Birbilis N., Chen X.-B. The Unexpected Role of Benzotriazole in Mitigating Magnesium Alloy Corrosion: A Nucleating Agent for Crystalline Nanostructured Magnesium Hydroxide Film // J. Electrochem. Soc. 2015. V. 162. № 8. P. 403.
  29. Rodriguez J., Bollen E., Nguyen T.D., Portier A., Paint Y., Olivier M.-G. Incorporation of layered double hydroxides modified with benzotriazole into an epoxy resin for the corrosion protection of Zn-Mg coated steel // Prog. Org. Coat. 2020. V. 149. P. 105894.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. СЭМ-изображения и карты распределения элементов по поверхности образцов ПЭО-СДГ-BTA (верхняя панель, а) и ПЭО-СДГ(BTA) (нижняя, б).

Скачать (99KB)
3. Рис. 2. СЭМ-изображение и карты распределения элементов по поперечному сечению покрытия образца ПЭО-СДГ. Области на СЭМ-изображении: сплав МА8 – 1, ПЭО-слой – 2, СДГ-слой – 3, эпоксидная смола – 4.

Скачать (52KB)
4. Рис. 3. Дифрактограммы, полученные методом РФА, для сплава МА8 с различными защитными покрытиями. Исследованы образцы: МА8 – 1, ПЭО –2, ПЭО-СДГ – 3, ПЭО-СДГ-BTA – 4, ПЭО-СДГ(BTA) –5.

Скачать (20KB)
5. Рис. 4. Спектры комбинационного рассеяния, оптические изображения и карты распределения СДГ (а) и BTA (б) для исследуемых образцов. Спектры комбинационного рассеяния для образцов ПЭО-СДГ-BTA и ПЭО-СДГ(BTA) были записаны в точках, отмеченных на картах. Исследованы образцы: ПЭО – 1, ПЭО-СДГ – 2, ПЭО-СДГ-BTA – 3, ПЭО-СДГ(BTA) – 4, порошок BTA – 5, порошок СДГ –6.

Скачать (70KB)
6. Рис. 5. PDP-кривые для образцов после 1 ч выдержки в 3.5% растворе NaCl. Исследованы образцы: МА8 – 1, ПЭО – 2, ПЭО-СДГ – 3, ПЭО-СДГ-BTA – 4, ПЭО-СДГ(BTA) – 5.

Скачать (26KB)
7. Рис. 6. Распределение локального рН (SIET-карты) на поверхности защитных покрытий с искусственно созданными дефектами, полученное при разном времени выдержки образцов в 0.05 М растворе NaCl, и оптические изображения сканированных участков (до выдержки – I, после 24 ч выдержки – II). Исследованы образцы: ПЭО – 1, ПЭО-СДГ – 2, ПЭО-СДГ(BTA) – 3, ПЭО-СДГ-BTA – 4.

Скачать (34KB)
8. Рис. 7. Распределение локальной плотности тока (SVET-карты) для образцов с искусственно созданными дефектами на поверхности защитных покрытий, полученное при разном времени выдержки образцов в 0,05 М растворе NaCl, и оптические изображения сканированных участков (до выдержки – I, после 24 ч выдержки – II) (а). Изменение локального pH и локальной плотности тока для образцов с искусственно созданными дефектами на поверхности защитных покрытий при выдержке в 0.05 М растворе NaCl (б). Исследованы образцы: ПЭО – 1, ПЭО-СДГ – 2, ПЭО-СДГ(BTA) – 3, ПЭО-СДГ-BTA – 4.

Скачать (80KB)
9. Рис. 8. Механизм коррозионной деградации магниевого сплава МА8 с ПЭО-СДГ(BTA)-покрытием (а) и базовым ПЭО-покрытием (б). I – в покрытии возникает дефект (а, б); II –инициация коррозионного процесса, приводящая к растворению магния (а, б); диффузия BTA в дефектную зону с образованием Mg(BTA-Н)2 (а); III – молекулы BTA и слой Mg(BTA-Н)2 ингибируют процесс коррозии, в результате чего образуется кристаллический Mg(OH)2 (а); рыхлые продукты Mg(OH)2 образуются в зоне дефекта базового ПЭО-покрытия (б).

Скачать (54KB)

© Российская академия наук, 2024