Самовосстанавливающиеся покрытия, содержащие слоистые двойные гидроксиды, импрегнированные ингибитором коррозии, для антикоррозионной защиты магниевых сплавов

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Методом плазменного электролитического оксидирования на поверхности магниевого сплава МА8 сформирована пористая керамикоподобная матрица. Проведена функционализация поверхности гетерооксидного слоя путем формирования пленки из слоистых двойных гидроксидов. Предложено несколько методов интеркаляции образованных наноконтейнеров ингибитором коррозии (бензотриазолом). Изучены состав, морфология, коррозионное поведение и механизм самозалечивания сформированного покрытия.

Full Text

Restricted Access

About the authors

А. С. Гнеденков

ФГБУН Институт химии Дальневосточного отделения Российской академии наук

Author for correspondence.
Email: asg17@mail.com
Russian Federation, Владивосток

С. Л. Синебрюхов

ФГБУН Институт химии Дальневосточного отделения Российской академии наук

Email: asg17@mail.com
Russian Federation, Владивосток

А. Д. Номеровский

ФГБУН Институт химии Дальневосточного отделения Российской академии наук

Email: asg17@mail.com
Russian Federation, Владивосток

С. В. Гнеденков

ФГБУН Институт химии Дальневосточного отделения Российской академии наук

Email: asg17@mail.com
Russian Federation, Владивосток

References

  1. Chen Q., Lu X., Serdechnova M., Wang C., Lamaka S., Blawert C., Zheludkevich M.L., Wang F. Formation of self-healing PEO coatings on AM50 Mg by in-situ incorporation of zeolite micro-container // Corros. Sci. 2022. V. 209. P. 110785.
  2. Li J., He N., Li J., Fu Q., Feng M., Jin W., Li W., Xiao Y., Yu Z., Chu P. A silicate-loaded MgAl LDH self-healing coating on biomedical Mg alloys for corrosion retardation and cytocompatibility enhancement // Surf. Coat. Tech. 2022. V. 439. P. 128442.
  3. Shulha T., Serdechnova M., Lamaka S. V., Lu X., Feiler C., Blawert C., Zheludkevich M.L. Corrosion Inhibitors Intercalated into Layered Double Hydroxides Prepared In Situ on AZ91 Magnesium Alloys: Structure and Protection Ability // ACS Appl. Mater. Interfaces. 2023. V. 15. № 4. P. 6098.
  4. Sun M., Yerokhin A., Bychkova M.Y., Shtansky D.V., Levashov E.A., Matthews A. Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy // Corros. Sci. 2016. V. 111. P. 753.
  5. Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Ustinov A.Y., Gnedenkov S.V. Hybrid Coatings for Active Protection against Corrosion of Mg and Its Alloys // Polymers. 2023. V. 15. № 14. P. 3035.
  6. Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Ustinov A.Y., Sukhoverkhov S.V., Gnedenkov S.V. New Polycaprolactone-Containing Self-Healing Coating Design for Enhance Corrosion Resistance of the Magnesium and Its Alloys // Polymers. 2023. V. 15. № 1. P. 202.
  7. Evans D.G., Slade R.C.T. Structural Aspects of Layered Double Hydroxides // Layered Double Hydroxides. Structure and Bonding. B: Springer, 2005.
  8. Xu Z., Wu Y., Zhang Z., Wang Y., Hu J., Ma Y., Zhang Z., Huang H., Wei J., Yu Q., Shi C. A review on the research progress of LDHs as corrosion inhibitors for reinforced concrete // J. Build. Eng. 2023. V. 70. P. 106303.
  9. Kasneryk V., Serdechnova M., Blawert C., Zheludkevich M.L. LDH has been grown: What is next? Overview on methods of post-treatment of LDH conversion coatings // Appl. Clay Sci. 2023. V. 232. P. 106774.
  10. Pan S.-Q., Zhang F., Wen C., Zeng R.-C. Advances in Mg–Al-layered double hydroxide steam coatings on Mg alloys: A review // J. Magnes. Alloy. 2023. V. 11. № 5. P. 1505.
  11. Pillado B., Mingo B., del Olmo R., Matykina E., Kooijman A.M., Gonzalez–Garcia Y., Arrabal R., Mohedano M. LDH conversion films for active protection of AZ31 Mg alloy // J. Magnes. Alloy. 2023. V. 11. № 1. P. 201.
  12. Li J., Luo M., Chen Z., Zhuang E., Yu B., Chen Y., Nong Y. Anti-corrosion mechanism of MgAl-LDHs inhibitors with varying anionic charge on reinforcing steel in simulated concrete pore solutions // Constr. Build. Mater. 2023. V. 363. P. 129882.
  13. Wang D., Zhu Q., Su Y., Li J., Wang A., Xing Z. Preparation of MgAlFe-LDHs as a deicer corrosion inhibitor to reduce corrosion of chloride ions in deicing salts // Constr. Build. Mater. 2019. V. 174. P. 164.
  14. Kameshima Y., Yoshizaki H., Nakajima A., Okada K. Preparation of sodium oleate/layered double hydroxide composites with acid-resistant properties // J. Colloid. Interface Sci. 2006. V. 298. № 2. P. 624.
  15. Shulha T., Serdechnova M., Iuzviuk M.H., Zobkalo I.A., Karlova P., Scharnagl N., Wieland D.C.F., Lamaka S.V., Yaremchenko A.A., Blawert C. Zheludkevich M. In situ formation of LDH-based nanocontainers on the surface of AZ91 magnesium alloy and detailed investigation of their crystal structure // J. Magnes. Alloy. 2022. V. 10. № 5. P. 1268.
  16. Гнеденков С.В., Синебрюхов С.Л., Хрисанфова О.А., Егоркин В.С., Машталяр Д.В., Сидорова М.В., Гнеденков А.С., Волкова Е.Ф. Свойства покрытий, сформированных на магниевом сплаве МА8 методом плазменного электролитического оксидирования // Вестник ДВО РАН. Т. 5. № 153. С. 35.
  17. Гнеденков, С.В. Хрисанфова, О.А. Синебрюхов С.Л., Пузь А.В., Гнеденков А.С. Композиционные защитные покрытия на поверхности никелида титана // Коррозия: материалы, защита. 2007. Т. 2. С. 20–25.
  18. Gnedenkov A.S., Sinebryukhov S.L., Filonina V.S., Gnedenkov S.V. Hydroxyapatite-containing PEO-coating design for biodegradable Mg-0.8Ca alloy: Formation and corrosion behaviour //J. Magnes. Alloy. 2023. V. 11. № 12. P. 4468.
  19. Li C.-Y., Gao L., Fan X.-L., Zeng R.-C., Chen D.-C., Zhi K.-Q. In vitro degradation and cytocompatibility of a low temperature in-situ grown self-healing Mg-Al LDH coating on MAO-coated magnesium alloy AZ31 // Bioact. Mater. 2020. V. 5. № 2. P. 364.
  20. Williams G.R., Khan A.I., O’Hare D. Mechanistic and Kinetic Studies of Guest Ion Intercalation into Layered Double Hydroxides Using Time-resolved, In-situ X-ray Powder Diffraction // Layered Double Hydroxides. Structure and Bonding. B: Springer, 2005.
  21. Gnedenkov A.S., Sinebryukhov S.L., Nomerovskii A.D., Filonina V.S., Ustinov A.Y., Gnedenkov S.V. Design of self-healing PEO-based protective layers containing in-situ grown LDH loaded with inhibitor on the MA8 magnesium alloy // J. Magnes. Alloy. 2023. V. 11. № 10. P. 3688.
  22. Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D.V., Vyaliy I.E., Egorkin V.S., Gnedenkov S.V. Corrosion of the welded aluminium alloy in 0.5 M NaCl solution. Part 2: Coating protection // Materials. 2018. V. 11. № 11. P. 2177.
  23. Gnedenkov A.S., Sinebryukhov S.L., Nomerovskii A.D., Marchenko V.S., Ustinov A.Y., Gnedenkov S.V. Carboxylates as green corrosion inhibitors of magnesium alloy for biomedical application // J. Magnes. Alloy. 2024. V. 12. № 7. P. 2909.
  24. Wieduwilt F., Lenth C., Ctistis G., Plachetka U., Möller M., Wackerbarth H. Evaluation of an on-site surface enhanced Raman scattering sensor for benzotriazole // Sci. Rep. 2020. V. 10. № 1. P. 8260.
  25. Chan H.Y.H., Weaver M.J. Vibrational structural analysis of benzotriazole adsorption and phase film formation on copper using surface-enhanced Raman spectroscopy // Langmuir. 1999. V. 15. № 9. P. 3348.
  26. Thomas S., Venkateswaran S., Kapoor S., D’Cunha R., Mukherjee T. Surface enhanced Raman scattering of benzotriazole: A molecular orientational study // Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2004. V. 60. № 1–2. P. 25.
  27. Rodriguez J., Mouanga M., Roobroeck A., Cossement D., Mirisola A., Olivier M.-G. Study of the inhibition ability of benzotriazole on the Zn-Mg coated steel corrosion in chloride electrolyte // Corros. Sci. 2018. V. 132. P. 56.
  28. Wang J.-L., Ke C., Pohl K., Birbilis N., Chen X.-B. The Unexpected Role of Benzotriazole in Mitigating Magnesium Alloy Corrosion: A Nucleating Agent for Crystalline Nanostructured Magnesium Hydroxide Film // J. Electrochem. Soc. 2015. V. 162. № 8. P. 403.
  29. Rodriguez J., Bollen E., Nguyen T.D., Portier A., Paint Y., Olivier M.-G. Incorporation of layered double hydroxides modified with benzotriazole into an epoxy resin for the corrosion protection of Zn-Mg coated steel // Prog. Org. Coat. 2020. V. 149. P. 105894.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. SEM images and maps of the distribution of elements on the surface of PEO-LDH-BTA (upper panel, a) and PEO-LDH(BTA) (lower panel, b) samples.

Download (99KB)
3. Fig. 2. SEM image and element distribution maps across the cross-section of the PEO-LDG coating sample. Areas in the SEM image: MA8 alloy – 1, PEO layer – 2, LDH layer – 3, epoxy resin – 4.

Download (52KB)
4. Fig. 3. Diffraction patterns obtained by XRD for MA8 alloy with different protective coatings. The following samples were studied: MA8 – 1, PEO –2, PEO-SDG – 3, PEO-SDG-BTA – 4, PEO-SDG(BTA) –5.

Download (20KB)
5. Fig. 4. Raman spectra, optical images, and distribution maps of LDH (a) and BTA (b) for the studied samples. Raman spectra for the PEO-LDH-BTA and PEO-LDH(BTA) samples were recorded at the points marked on the maps. The studied samples were: PEO – 1, PEO-LDH – 2, PEO-LDH-BTA – 3, PEO-LDH(BTA) – 4, BTA powder – 5, LDH powder – 6.

Download (70KB)
6. Fig. 5. PDP curves for samples after 1 hour of exposure in 3.5% NaCl solution. The following samples were studied: MA8 – 1, PEO – 2, PEO-LDH – 3, PEO-LDH-BTA – 4, PEO-LDH(BTA) – 5.

Download (26KB)
7. Fig. 6. Distribution of local pH (SIET maps) on the surface of protective coatings with artificially created defects, obtained with different holding times of samples in 0.05 M NaCl solution, and optical images of scanned areas (before holding – I, after 24 h holding – II). The following samples were studied: PEO – 1, PEO-LDH – 2, PEO-LDH(BTA) – 3, PEO-LDH-BTA – 4.

Download (34KB)
8. Fig. 7. Local current density distribution (SVET maps) for samples with artificially created defects on the surface of protective coatings, obtained at different times of sample holding in 0.05 M NaCl solution, and optical images of scanned areas (before holding – I, after 24 h of holding – II) (a). Change in local pH and local current density for samples with artificially created defects on the surface of protective coatings when held in 0.05 M NaCl solution (b). The following samples were studied: PEO – 1, PEO-LDH – 2, PEO-LDH(BTA) – 3, PEO-LDH-BTA – 4.

Download (80KB)
9. Fig. 8. Mechanism of corrosion degradation of magnesium alloy MA8 with PEO-LDH(BTA) coating (a) and base PEO coating (b). I – a defect appears in the coating (a, b); II – initiation of the corrosion process, leading to dissolution of magnesium (a, b); diffusion of BTA into the defective zone with formation of Mg(BTA-H)2 (a); III – BTA molecules and the Mg(BTA-H)2 layer inhibit the corrosion process, resulting in formation of crystalline Mg(OH)2 (a); loose products of Mg(OH)2 are formed in the defective zone of the base PEO coating (b).

Download (54KB)

Copyright (c) 2024 Russian Academy of Sciences